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Bayesian Factor Analysis¥*
Shin-ichi Mayekawa

The University of Iowa

\\\\ Abstract
\,

- A new Bayesian procedure for factor analysis is developed in which
factor scores as well as factor loadings and error variances are treated
as parameters of interest. The presentation is fully Bayesian in the
sense that all the parameters have prior distributions and the posterior
mode of a subset of the parameters is used as the point estimate.

The model is a standard one where the observations are expresssed
as the sum of the linear combination of factor scores, with factor
loadings being the weights, and a normal error term. As the prior distri-
bution the following exchangeable form is assumed:

A factor score vector for each observation has a common normal
distribution.
A factor loading vector for each variable has a common normal
distribution.
A error variance for each variable has a common inverted chi
square distribution.
When the exchangeability of all the observations/variables is in question
observations/variables may be divided into several subsets and the
observations/variables within each subset may be treated as exchangeable.

Since the posterior marginal distribution of factor loadings and
error variances can be expressed as the product of the covariance-based
likelikhood and the prior distributions of factor loadings and error
variances the proposed method ipcludes both the random and the fixed
factor analysis models. —w .t agitx(\ o neluds 2L 15

The mode of the hyperparameters is first derived from their posterior
marginal distributions and conditional on those values the mode of error
variance ig derived from their posterior marginal distributions. Then,
conditional of those estimates, the point estimate of factor scores
and factor loadings are derived as the joint or the marginal mode of the
posterior distribution of factor scores and factor loadings depending on
the investigator's interest.

The marginalization is done via some variations of the EM algorithm
and it is found that the different variations result in almost identical
estimates. It is also found that the effect of the prior distribution of
error variances is such that it reduces the number of local maxima.
Finally, by specifying a priori zeros in the locational hyperparameters
of factor loadings, a simple structure can be obtained without rotation.

*Support for this research was provided under contract #NO0OO14-83-
C-0514 with the Personnel Training Branch of the Office of Naval Research,
Melvin R. Novick, Principal Investigator.
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Bayesian Factor Analysis

CHAPTER I

INTRODUCTION

Factor analysis is a multivariate statistical method used to explsin the
relationships among observed variables. Siwmply stated, ltll;dltd factor
analysis assumes that each observed variable is a weighted sum of two sets of
random variables, namely, common factor scores and unique scores, all of which
are unobservable. The purpose of the method is to estimate the weights, or

. factor loadings associated with each varisble and to estimate the factor scores
associated with each person. A typical application of the factor analysis
method consists of the calculation of a correlation/dispersion matrix of the
observed variables, which contains the sufficient statistics under the usual
model, estimation of the weights, statistical testing of the model, and
interpretation of the derived latent variables. Therefore, much of the
literature of factor analysis is concerned with bhow to estimate factor
loadings, how to test the model statistically, and how to find a meaningful
interpretation of those latent variables.

Sometimes, however, it is desirable to go further and to estimate the
values of those latent variables associated with each observation, For
example, the vector unfolding model, which is often used to analyze the
underlying structure of prefex;once among & set of stimuli, has essentially the

same model, Carrol1(1972), or Bechtel(1976), and the scale values of each

.....
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stimulus mst be known in practical applications. In applications of
Spearman’s theory of genersl intelligence it is the value of ‘g’ that is of
interest in all applications. Also, the congeneric test model in classical
test theory uses the same model as the factor analysis, Lord and Novick (1968),
where the true score is represented by the factor soores. Therefore, if the
individusl true scores are needed they must be estimated. (See Chapter III for
the detail.) However, as we shall soe in Chapter IX, these values canmot be
determined uniquely under the standard factor analytic model because they are
not treated as parameters of the model but remain as random variables even
after the factor loadings are estimated. This general problem is known as the
indeterminacy of factor scores, which, was probably first poiated out by Wilsom
(1928) and later olaborated by Guttman (1955). In this sense the standard
factor analytic model was called the random factor analytic (RFA) model by
McDonald (1979) and Andersom (1984),

The development of a model which enables us to estimate the values of
those hypothetical concepts, namely, the factor scores, is not new, For
example, Lawley (1942), Whittle(1952), Anderson and Rubin(1956),
Joereskog(1963), McDonald and Burr(1967), and McDonald(1979b), have considered
this problem, although usval textbooks do not discuss this model in
detail,(ses, for example, Harman’s(1976, sec.2.3) treatment.) However, none of
those methods were successful in the sense of providing unique estimates of
factor scores. As we shall see later, this is due to the fact that the
likelibhood function of the fixzed factor snmalytic (FFA) model, in which the
factor scores are treated as parameters, is unbounded above, which implies

nonexistence of maximum likelihood estimates.

.......................................
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The purpose of this thesis is to develop a method that emables the
estimation of factor scores as parameters. Due to the nature of the problem
the treatment is based on Bayesian fixed factor analysis., In Chapter II we
first provide a brief review of the random factor amalytic model and its
classical and Bayesian estimation procedures. Then, in Chapter III, the
classical fixed factor amalytic model is introduced and its new Bayesian
treatment is discussed in Chapter IV, It is shown that the method proposed is
more general in the sense that both the RFA and the FFA models are included as

special cases, In Chagter V, an evaluation of the new method is presented

based on some real and artificial data sets.
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CHAPIER 11

REVIEW OF THE RANDOM FACTOR ANALYTIC (RFA) MODEL

Model

Factor analysis is one of several multivariate statistical methods
studying the underlying relationships between observed variables. It assumes

that each observed variable, yj. j=1,2,...,p, ©c3n be represented as a sum of
three components:

4
(2.1.1) ¥ -j + Zsl[ fo.je ]+ “j'

where the m, is the overall mean of variable j, the fe' e=1,2,...,r,

J

r ¢ p, are latent (unobserved) variables called common factors, the .je'

e=1,2,...,r, are the woights (called factor loadings) that link the eth

factor to variable j, and the u, are other latent variables called unique

3

factors for variable j. The number of latemt common factors, r, is usually
referred to the number of dimensions. Arranging p observed variables together,
(2.1.1) can be written as

(2.1.2) y=m+Af +q,

where

= 2Ynse0es ‘Y 1,
Y (Yl Yy yp] p x

- = [‘"1""2""'";;]" px1,
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A=la.ayccn) = [a

J

f= [fl.f frl" rxl,

2.".'
us= [“1'“2“"'“p]" pxl.

Using E, D, and C to represent expectstion, dispersion and covariance

operators, respectively, the following specifications are typically made:

(2.1.3) E(f) =0
(2.1.4) D(f) = CF

where CF is the r x r factor correlation matrix

with diaz(CF) = Ir’

(2.1.5) E(n) =0,
(2.1.6) D(u) =D,

where D is the p x p diagonal matrix consisting of dj's.
(2.1.7) C(f,u) = 0, (zero).

We call this model, following McDonald(1979b), the Random Factor Analysis (RFA)

model, in the sense that f is treated as a random varisble.

Under the RFA model we can deduce the following:

(2.1.8) E(y) = m,
(2.1.9)  D(y) = @ =ACA’ +D,

Cly.0) = AC,,

(2.1.100 E(ylf) = m + Af,

and
-4
~ =4
Y
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(2.1.11)  D(glf) =D,

The last relation, (2.1.11), is sometimes called ’partial limear independence’,
Joereskog and Soerbom(1979, ch.1), or °‘weak local independence’,

McDona1d(1979a). The implication of (2.1.11) is that, given f, the unique
scores are not correlated with each other and that with respect to f the

conditionsl variances of the unique scores are homoscedastic within each
variable, It should be noted that the number of dimensions, r, is defined by
(2.1.11), That is, r is the minimom number of common factors such that the
conditional dispersion matrix of the observed varisbles given the common
factors is diagonal, The only substantive assumptions of the RFA model are
that r { p and that the variables are conditionally independent and
homoscedastic (2.1.11). Beyond that the model is simply a decomposition, cf.
Lord and Novick, 1968, Ch., 24.

It can be shown that if the original variables are rescaled by p x p

diagonal matrix V and a p x 1 vector v so that

(2.1.12)  y = Vly - v),

then the resulting variables have the mean and dispersion,

respectively,

(2.1.13)  E(y) = Vim - v, -3

. ;
D(y ) = vav. -

Therefore, the change of original scale results in the corresponding

rescaling of the mean, factor loadings and unique variance, namely,

. . .
m =Vimy), A =VA, and D = WDV,

: K ,.4(.' AN
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7
When we ostimate parameters from the observations, whether this property holds
among the estimates depends on what method of estimation is used, It is known
that maximum likelihood estimates and Bayesian mean, median, and modal
estimates have this property. Some other estimation procedures do not have o
this property.

It is well known that the model (2.1.2) through (2.1.7) is not uanique.
Consider the transformation -
(2.1.14) £ =T'f,

where T is the £ x r nonsingular matrix with dilg(T'CFT)-Ir.
With this new latent variable we can rewrite the model as

(2.1.15) y=m + Bf +u,

where B = A (T') 2, -
which has the same form as the original model.

With this new parametrization, we have -

2110 EL £ 1 = 0,

(2.1.17) DI g‘ ] = T'GT,

(2.1.18) DL y 1 = B T'GT B’ +D, -
&nd

(2.1.19) Cl z.f ] = BT'CT = A, T.

This implies that, given one set of factors, we can always transform them into
s desired form by appropriately choosing the transformation matrix T, This is

known as rotational indeterminacy. For example, if the T matrix has the form
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L4 Nartin and McDonald’s prior on D

Combining the prior distributions of A and Ci in L1 through

L3 with the prior distribution of D of the form

the density of dj is proportional to Exp[(—l/Z)vJ/dJ].

j=1,2,...,p, independently,

where v ’'s are prior oonstants,

3

we have 141, 142, and L43, say, respectively.

PR
For those elements of A of which we have strong prior
information,
.
s ¢ N(a ,6),
where 8 is the column roll-out of those elements of A.
For the rest of the elements of A, of which the information

is vague, a locally uniform prior is assumed.

For each element of D, independently,

the density of d, proportional to lld:.

3

is used.

.
2 , G, and h are the prior oconstants.

A and D are mutually independent.
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A, CF’ and D are mmtually independent.

12 Non exchangeable factor loadings

For those elements of a °'s not fixed, independently,

J
2 . 2
nj.ls” : N(a jo * Yo ),
2 . 2
djt'jol.je : x ( dj. ).

For Cp and D the same priors as L1 is used,

a jo' d . for those elements of A not fixed,

jo* Vie
are the prior constants.

A, CF' and D are mutually independent.

L3 Noninformative prior
For those elements of A not fixed,

a locally uniform.

Jeo

For Cp, hierarchically,
C;1|R : '!'( R., s )u

density of R is proportional to |R|-(r+1),2.

g is the prior constaat.
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2., Likelibhood function

L1l through L4 and PR Sample dispersion matrix is assumed to have

the Wishart density im (2,2.9), The likelihood

L, in (2.2.10) is used.

1
) 44 Same as above with nonzero off disgonal element of D.
w The data matrix Y is assumed to have the Normal

donsity in (2,2,12). the likelihood L, will be used.

3. Prior distribution

L1 Exchangeable factor loadings

For those a, ’'s which are not fixed, hierarchically,

Jo

. .
s, la .32 : N(Ca , 82 ), i.1.d,,
Je

L ]
a : locally uniform,

wi/s ;. ().

For CF.

C;l : 'r(R.g).

For each element of D, independently,

hjv,/d, x*( B ).

d, w, R, g, and vj't. and hj‘s are prior

constants.

.............................
...........................
................................
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S. Evaluate the posterior distribution in order to find

some values of the parameters whioch best represent the

posterior distribution, (location and dispersion.)
In the following section a step by step comparison of seven existing Bayesian
methods will be presented. These methods are:
(L1) Lee’'s(1981) case 1,
(L2) Lee’s(1981) case 2.
(L3) Lee’s(1981) case 3.
(L4) Lee's(1981) case 4.
(PR) Press’'(1982).
(KP) Kaufmann and Press’(1973).
(WO) Wong’s(1980).
(Each method will be denoted by the abbrevistiom presented

in the parenthesis.)

Boocause Martin and McDonald’'s(1975) method can be treated as a special case of

Lee’s mothod, it will not be considered explicitly.

Stepwise Comparison of Bayesian Methods

1. Parameters of interest

L1 through I4 A, CF. and D with some of the elements of A fixed.

PR A and D,
kP A and D, with D not restricted to be s diagonal,
r not restricted to be less than p.

wo ®, A, and D,
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approximation to the Xz distribution.

To test the hypothesis with some of the elements of A or (.‘17 being fixed,

say, to zero, a slightly different procedure is employed. This approach is
called confirmatory factor smalysis or the restricted model, [Joereskog

(1969)). Treating CF as a parameter in the model, if the pattern of the

values fixed is such that it enables the unique maximum of the likelihood, the
minimization is performed without restrictions (2.2.15) and (2.2.16) with

respect to D and those elements of A and CF which are not fizxed, If this is

not the case the minimization will be performed subject to some additional
condition which guarantees a unique solution. In either case, some adjustment
of the degrees of freedom is necessary., Essentially, d.f. 1is equal to
(2.3.4) p(p+1)/2 - number of free parameters to be estimated

+ number of independent restrictions on the parameters.

For further details, see Joereskog(1969).

The Review of Bayesian Estimation Methods in RFA Model

In this section a review of existing Bayesian estimation methods in the
RFA model is presented. In general, Bayesian estimation proceeds as follows:
1. Identify the paramsters of interest.
2. Specify the conditional distribution of data given
parameters, namely, the likelihood functiom,
3. Specify the form of the prior distribution of the parameters.

4. Find the posterior distribution of the parameters given the data.

........
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for the resulting normal equations. Sinoe the grand mean m is treated as kmown
in their method, the result is the same as the MLE based on the I.2

likelibood.

Goodness of Fit Test in RFA Modpl

With large N, it is known, Joereskog (1967), that minus twice the log

likelihood ratio
+ _+
(2.3.1) LLR=-2( (L, (A",D 1) )

N-1)/2

- 1n( Is1”¢ Expl-(N-1)/2)tx(S 19)] )

= (N1)( FI(A+.D+) - 1a(lSh - p)
is distributed as

UR : X( ( (p0)? = (p*r) M2 ).

The inside of the second logarithm term is the valwe of l.1 evaluated at

2 = (N/(N-1))S . Therefore, the hypothesis

(2.3.2) Hr : A= ACFA' + D with specified r,

can be tested against the alternative hypothesis

(2.3.3) Ho : 0 is positive definite symmetric,

with approximate significance level alpha, by comparing the value of LLR to the

(1-alpha) perceatile point of the Xz distribution, i.e., if LLR exceeds the

percentage poiat, Br will be rejected. Bartlet(1951) has suggested that the

use of N-1~(2p+5)/N-2r/3 in place of N-1 in (2.3.1) in order to obtain a better

........................
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matrix, thas, the ) matrix, must be caloulated by (2.2.23) each time D is

updated since we are treating Fz as the function of D only. The algorithm

vsually converges rapidly to a local minimum, It is known, however, that the
minimom often lies on the region where some of the error variances are zero,
i.e., a Heywood case,

Another approach to the ML estimation of the RFA model is found in Rubin
and Thayer (1982) where the EM algorithm is used. ( See Chapter IV for the
explanation of the EM algorithm. ) Their solution is the iteration of the
following two steps:

The E-step:

(2.2.26) W = ( D + ACA’* )" AG,
and

(2227 Q= (W SW+V) D,

where

(2.2.28) V = C; - GAIDACA’) AC,.

The M-step:
(2.2.28) A=8SVWQ,
and
(2.2.29) D = diag( S - SWW'S ),

The method is derived by writing the l.3 1ikelihood discussed in Chapter III

in terms of the sufficient statistics, S, (1/N)Y'F, and (1/N)R'F, replacing the

corresponding quantities by their conditional expectations given Y, namely, S,

SN, and Q 1, differentisting the result with respect to A and D, and solving
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should be taken, Also, from (2.2.18) we have, given A,

(2.2.24) D = diag( S - ACFA' ).

Therefore, the iteration of (2.2.23) and (2.2.24) gives the desired minimum of

Fz whon the process converges, Howsver, this method given in Lawley and

Maxwell (1963) is known to be very slow to converge. Therefore, the following
method is usually used [Lawley and Maxwell (1971) or Joereskog (1967)],

Noticing the fact that the conditional minimum of Fz with respect to A given

D is obtained analytically by (2.2.23) we may consider Fz as a function of D

only. That is, the derivative of F2 with respect to D can be evaluated as

(2.2,23) d led d

g = anlad + tr( [anlaAl'laAlad n,

J J
j = 1.23.... po
However, the second term vanishes at the point where (2.2.23) is satisfied =

since anlﬂ A is gzero if the A matrix given in (2.2,23) is used to evaluate
it. Therefore, the derivative of F2 with respect to D, when it is regarded

as a function of D only, is given by (2.2.18) with the A matrix, tlms the O

matrix, defined by (2.2.23). Given the derivatives, the minimization of Fz

can be performed via several existing numerical methods which do not require

the information provided by the second derivative of F, with respect to D.

2 ¥

For example, the Fletcher—Powell method, which is advocated by Joereskog -
(1967), determines the direction of search for the minimun by approximating the ]
"

inverse of the second derivative matrix using the information provided by the -]
A

first derivatives only. It sould be noted that when the evaluation of F2 is NS
.

—

necessary, say, in the cubic search slong the direction determined, the A o
.-'.;j

a0

.“:1

]

3
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solution based on Fz is as follows, The partial derivatives of Fz with

respect to A and D are:
(2.2.17) 3R /oA = 2( 0 A0 10 A ),
and

-1 -1_-1
(2.2.18) 8F2/OD =diag( 2 -0 "82 "),

( See the Appendix for matrix differentiation. )

By setting (2.2.17) equal to zero we have

(2.2.19) Sa71A = A,

Bat, by Lawley’s trick in the Appendix, it can be reexpressed as
(2.2.20) sn'11\(1r+1mf1m’1 = A,
thus,
-1 s |
(2.2.21) 8D " A=A (It+A D "A),

or,

2 1/2

"1/2 172 A (Ir+A'D-1A) .

(2.2.22) p Vg A=D

This form shows, with the restrictionm (2.2.15), that (It+A'D-1A) is the

1/2 -1/2 1/

eigen values of p /“sp and that D ZA is the associated eigen

vectors., That is, given D, the A matrix which minimizes Fz can be written as

/ 2

(2.2.23) A = D 2Q(L+It)1

12 4-1/

where L is the eigen value matrix of D”1 zm" 2uui Q is the

associated orthonormal eigen vectors.

It can be shown that in order to minimize F‘2 the r largest eigen values
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x Brpl(-1/2)tr((T-1,8°) " (F-1,2') )]

= 101NV ; gl (-w2)te(0718))

x Expl(-N/2)(y -m)'0 " (y -m)],

where y = (/NN [ 3, 1.
Noticing that regardless of the value of Q, Lz is maximized at

(2.2.13) g+ =Y.

the MLE of A and D can be found by minimizing the monotone decreasing fumotion
of "'2’

(2.2.14)  F,(A,0) = 1alol + tr( -1

S).

Becsuse Fz is not & monotone fuamotion of Fl the resulting solvtion, when N

is not so large, is different.
In both methods, in order to remove the rotational indeterminacy the

restrictions

(2.2.15)  A'D 1A is disgonal,
and

(2.2.16) CF - Ir'

are enforoed, If the factors are assumed to be correlated, the correlated
factor will be found by finding the transformation matrix P described in
(2.1,14) through (2.1.20).

Several numerioal methods are available, for example, see

Lavley and Maxwel1(1963,1971) or Joereskog(1967,1977). The outline of the




..........................

1
(2.2.6) 8= (1/N)Y'JY,

where

‘2.2.7) Y - [xlnzzco-otw 'l N X Po

and

(2.2.8) J =1 - (/NLL",

has the Wishart distribution, Press(1972),

(2.2.9) NxS§ : 'P( M!FA' +D, N1),
where 'p( C , df ) denotes the Wishart distribution with

the expectation df x C and the degrees of freedom, df.
The likelihood of A and D is proportional to

|-(N-1)IZ

(2.2.10) L (A,DlS) = lo Expl-(N/2)t=(0 25)],

where the symbol == denotes the proportiomality,
Therefore, in this formulation, the statistical estimation of the original RFA
parameters reduces to the estimation of the covariance structure shown in

(2.1.9) under the Wishart probability model. (Usually, m is estimated by the

sample overall mean.) The maximum likelihood estimates (MLE) of A and D sre

found by minimizing a monotone decreasing functiom of L1

(2.2.11) P (A.D) = 1slal + (N (N1))ec(a”1s).

Although this is the most commonly used ML solution there is another ML
estimation procedure based om the original density of Y described ia ~

Anderson and Rubin(1956) and Mardia, et., 81.(1979). The likelihood of m, A,

4
9

,_J

and D given Y can be written as 'j
-

(2.2.12) L (m,ADID) = gt -V
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whore 0 is defined in (2.1.9),

Np( m , O ) denotes the p-variate normal distribution
with the mean vector m and the dispersion matrix 4,

and the symbol : 1is used to denote ths distributionmal law,
By applying Rao’s (1973) formmlse 8a.3(1) and 8a.2.9

it can be shown that if we replace (2.1.7) by its stronger form,

(2.2,2) £ and u are statistically independent,

then (2.2.1), together with (2.1.2) through (2.1.6), imply,

and

(2.2.4) 3 : N(O.D).

Therefore

2.2.9 ylgf : N, (mHA£.D).
Because of normality, (2.2.5) implies the local independence of y given f

in the sense of Lord and Novick(1968,ch.24), However, it is not true that the

normality of 7 and the weak looal independence in (2.1.11) imply the strong

local independence in (2.2.5) and the independence of £ and u in (2.2.2).
Conversely, in order to derive the normality of y im (2.2.1), we can start with :::1
(2.1.2), the independence of £ and u in (2.2.2), and their normality in

(2.2.3), and (2.2.4). -1
>

Having observed N independent observations, I i=1,2,...,N, it follows -

that the sample dispersion matrix
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random, and, therefore, cannot be determined. Some interesting discussions of
this point from a Bayesian point of view are found in Bartholomew (1981) and
Mardia, Kent, and Bibby (1979).

Historically, the RFA model is stated in terms of the correlation matrix,

-1/2

that is, using [diag(n)]) and m as the scaling constants V and v,

/2

::l respectively, in (2.1.12), (2.1.9) can be written as
F /2

(2.1.22)  D(z") = diag(® V2 0 d1ag(@) V2 = B, say,

where R is the population correlation matrix of the observed variables,

However, instead of the population mean and standard deviation, which are not

e T
R o, LR
PR [P PR A K

obgervable, if we use the sample analogues of those quantities as the scaling

s
- constants, (2.1.22) is no longer correct since y is not a linear

transformation of y. Similarly, if we treat those estimates as fixed scaling

constants, (2.1,22) is not correct either since in this case R is not the
population correlation matrix but simply a rescaled covariance matrix,

Therefore throughout this paper we do not refer to the correlation matrix,

Maximum Likelihood Estimation im RFA

In this section we briefly review the Maximum Likelihood (ML) estimation

procedure of the RFA parsmeters, namely m, A, and D. In order to perform ML

estimation it is necessary to introduce the following full distributional
sssumption:

(2.2.1) y : N’(! ., 0)

W e
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(2.1.200 T = P N M2 o /2 pr,
where CF = PN P’ is the normalized eigen decomposition of CF,
and Q is any r x r orthonormal matrix,
the new variasble g. has the same correlation matrix CF If the T matrix
has the form
1/2 Q,

(2.1.21) T=PN

.
the new variables become orthogonal, i.,e., D[ £ ] =1.

It should be also noted that under the RFA model f is treated as a latent

random variable and therefore cannot be estimated in the usual statistical

sense, i.e., after m, A, and D have been estimated £ and u still remain as

random quantities, The so called 'problem of factor score indeterminacy’ stems .

partly from this fact. Usually, in order to 'estimate’ the value of f

associated with each object, i=1,2,...,N, some arbitrary least squares
criterion is introduced and the value which minimizes the criterion, given the
ostimate of A and D, is sought., Without these additional criteria it is koown,

Guttman(1955), that, as a linear combination of y, the factor scores camnmot be

uniquely determined oeven if wo have estimated A and D uniquely. (See the
Appendix for the derivation of the Guttman/Estselman formula.) That is, given

A and D, we can construct an infinite number of sets of £ and u which satisfy

the model (2,1.2) through (2.1.7). Shidba (1969) has identified at least
sixteen methods with differeat criteria. Simply stated, given the particular A

matrix and conditioning on the observed value of y, f and u in (2.1.2) remain

-~ .._\..‘. .

. o -

.................. R
LR R T SO s NS
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| 4 4

In this model, instead of using the (A,D) parametrizatiom,
the prior density of (A,0) is assumed to be proportiomal to

£(A,0) = Expl(-1/2)tx(A-A,)V, (A-A,)'G)]
x al" TP 2 17266 daan],
where Q(A) = So + (A-Al)vl(A—Al)'.

and b, V1, 3¢ Al‘ Az, and 80 are the prior

constants,
This form of density implies that given @, A is a truncated
matrix normal distribution, and that given A, O is a
truncated Wishart distribution, The truncations are dome

so that D = O — AA' is positive definite,

wo

For m,

-1

: N(O,Q ), 0" - 0 (zero).
P - m m

For each element of A, independently,

. 2 t ]
.J. . N( o » . ° )' . llzioolbro

Because the main purpose of Wong’'s study is the marginmal
maximum likelihood estimation of D, no prior distribution
of D is used.

m and A are mutually independent.

W e e e e e e e L et T T SR

. e e e St e D . T Lt e e e s LT RS
R RPN L L L LI I P v . B A A . < 0.
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sze's are the prior constants.
Wong zlso proposed a prior of the following form:
m same as before.
For each column element of A, independently and hierarchically,
. . 2
_._J.e : NP(.ogp. sclp).
b4 2 2
s, N( O, P ), 2 ee > infinite.
Empirical Bayes estimation of the prior constants, namely,
120. o=1,2,...,r, is discussed in his paper briefly.
) 4, Posterior distributions
L1
. 2
After integrating a and s* out,
£(A,D,ClS) == L (A,D)
. 2 -(nA+d-1)/2
x Tl [(.JG u") Mw/nAl ]
x 1™ gt 172y excmc i
-(hj+2)/2
x [d ]
Kyl 4
Expl(-1/2)) P [ n,v /a1 1,
 Expl1/2) 7,0 vyl
) where T, denotes the product of those n, elements of A
e et e e AT T T e e e e T e T i A e e e e s o,
e PLFL PP DU IAITIRIIA VAR IR ST A TN S TN AT AT W e WA I O N, S R




which are not fixed.

12

f(A.n.cpls) = L, (A,D)
s 2
x Tl [(nj.-a jt) ﬂlj.vj.

x ( the last three factors of L1 ),

](djoﬂ)lz )

f(A.n.c,ls) = L, (A,D)
z |CF|(r+1)/2
x ( the last two factors of L1 )

141, 142, and 143

f(A,D.CFIS) of these cases are the same as the ones in
L1, L2, and L3, respectively, with the last two factors

/a3 1.

replaced by 'R?_llﬁxp[(—lﬁ.)v fih

£(A,DIS) == LI(A.D)

x Ipl Expl(-1/2) (g—_._‘) 'G(g-;)l .

£(A,D|S) == L, (AD)E(A,9),

where £(A,0) is defined in the above.

24




The marginal distribution of A is proportionmal to
£AlS) = F s [~ND/2
x Expl (-1/2)tr(6(A~A2)V2(A-A2) '],

where 1F1 is the confluent hypergeometric function

of the arguments (h+N)/2, h+Nép, -1/2(M’)-1Q(A)+S .

defined in Herz(1955).

After marginslization of m, the conditionsl

distribution of A given D and Y is proportiomal to

£(AlD,Y) == L,(A,D)

x Bxpl(-1/2)) % [ 8 ‘2 /521 ).

5. Evaluation of the posterior distribution

1oe(1981) suggests the use of the joint mode as an estimate of each
parametor. A numerical method anslogous to the ML solution is proposed.
However, this provides the location information only. Press(1982) doss not
suggest which values to be used as estimates. Kaufman and Press(1973) suggest
the exact evaluation of the marginal mode and the normal approximation of the

density. The apporoximationm of the form
als : N ( t+. S, ) truncated so that
= pr = 1

(N/(N-1))S-AA’ is p.d.,
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I where & is the columm roll-ont of A,
8;1 = [V1 x S:ll + [V2 x G,
. s. = (N(N-1)S/(h+N-1),
s’ = 8, [(v, = s‘:l)gl +(V, x G)a,],
8, and g, are the columm roll out of A,
o
- and Az. respeotively,
and x denotes the Kronecker product.
.« Wong(1980) does not follow the usual Bayesian approach. Iastead, he suggests
| the maximization of

L(DID =/ £(AID,Y) aA,
a whioch is the marginal likelihood of D. He suggests the uvse of the EM algorithm
E_:L: with numerical integration with respect to A above. For another set of the

priors he also suggests the same algorithm to perform the hypsrparameter

estimation.
Discussi
’ scussion
. As for the choice of the likeiihood all the suthors but Wong started with
f::*_ the sample dispersion matrix, This is due to the fact that m is of no interest
D in typical applications. However, as shown in the posterior distribution of
'_-_;; Wong’s method, the posterior distribution based on the likelihood of S, namely,
;_:j Ll' can be obtained as s marginal posterior distribution of the l.‘z based
.. -1
- posterior distribution. In the limiting case when D- —> zero, it can be '
- o
] -
S 4 . . .
............. T I P L R T T ALY SO AN
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shown that with the normal prior of m, the posterior marginal of A and D ( and
CF) is the product of the Wishart kernel and the prior of A and D (, and
CF). Therefore, the method based on 1.2 sooms more gonsral. On the

contrary, the grand mean is so well estimated by the sample mean, it mey be

better to exclude m from the set of parameters of interest in order to make the

resualting posterior distribution simple.

The assumption employed in Kaufman and Press(1973) that the off diagonal
elemsnts of D are not zero is a questionable one. It clearly contradicts the
usual assumption of weak local independence, (2.1.11), or its strong form,
(2.2.5). However, as Kaufmann and Press suggest, it accounts for the
possibility of specification error, that is, if the posterior distribution of D
is not concentrated on the diagonal matrix them it implies that the number of
dimensions specified, r, is too small to explain the covariance structure of
the form in (2.1.9). Therefore, as long as we can evaluate the posterior
distribution of D, the nonzero off-diagonal assumption of D seems to provide
useful information for determining the number of dimensions.

As for the form of prior distribution, the most interesting contrast

exists between Lee’s treatment of A and that of Press. That is, while Lee

assumoes those elements of A for which we have strong information to be fixed,
Press places strong prior on those elements. Taking the specification error
problem into account, Press' approsch seems superior. 4

Finally, when the posterior distribution is complex, there always exists a
problem of the choice between the exact modal estimate and the approximation of T

- the posterior distribution by some evaluatable density such as the sultivariate

. AU .
CETAIE TN YL TR SN . .
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normal distribotion. Although the exact evaluation of the (joint) mode
provides an exact value of one indicator of the location of the posterior -
distribution, it does not provide the dispersion information at all. On the
other hand, if we approximate the posterior distribution we can have both
locstion and dispersion information with less acouracy in the sense that those
are the approximations, In face of the complexity of the posterior

distribution this is an open question,

e b e e
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CHAPTER I1I

REVIEW OF THE CLASSICAL FIXED FACTOR ANALYTIC (FFA) MODEL

Model
As stated before the common factors f are treated as random latent

variables in the RFA wodel. This is due to the fact that the RFA model was

developed in close relation to the classical test theory model in which each

subject is often treated as a random observation and the assumption of

normality is to some extent reasonable. However, there are some areas in which
- it is impossible to have a random sample of subjects, yet the model (2.1.1)

seems reasonable. Also, the value of f associated with each object, which is

by definition impossible to estimate in the usual statistical sense under the
RFA model, is often needed in many applications., In this chapter a model in
which the common factors are treated as fixed quantities, namely, the Fixed
Factor Analysis (FFA) model, will be reviewed.

The FFA model starts with (2.1.1) and its matrix equivalent form

(3.1,1) Y= lNE' +FA' + U,

or, equivalently,

=m1 +Fa +u

1(.‘) j_N J _(J)D j-ltzlo-llpl

where Y = [21.12.. . '!N] ' I;-:
{

= [3(4)"X(2)r X (p))-
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F = [51.52.....£Nl‘

- [-!(1).‘!(2)'.."2(!)].

A= [31.32.....9_’1'.
ne= [-1..2..-00-1’].'

U= [31’32""'¥'

= [3(1)'!(2)""‘3(1:)]‘

(Vhen we refer to the columns of each matrix we attach parentheses to the

subsoript, that is, 5“) and 51 stand fi. the 1tk column and the it2

row of the F matrix, respectively.)
In order to avoid the redundancy of the parametrization the restrictioms

(3.1.2) 1'F =0',

and

(3.1.3) (1/N)F'F = CF , where diu(CF) = Ir'

are enforced., Since these restrictions are the counterparts of (2.1.3) and
(2.1.4) in the RFA model, there still exists the rotational indeterminacy if

CF is identity. The distributional assumption

(3.1.4) g,y ¢ NGO, AT, 32,0, b

5}
is usually made. The equivalent form of this assumption is

(3.1.5) ! Np( 9 » D )' i-l’zlnoc)N. ioiad-l

i
where D is the p x p matrix whose diagonal elements

consist of d 's.

J

From (3.1.1) and (3.1.4) it is clear that the FFA model is equivalent to

e S ven Jie_fhag e 4 A VA S it A
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the multivariate regression model with unknown regressor matrix and with

diagonal error dispersion matrix, or to the m~group regression model with

unknown common regressor matrix with heteroschedastic error variances,

[Novick, et., al. (1972).]

The likelihood of the set of parameters, namely, F, A, m, and D, is given

by
(3.1.6) L,(m,F,ADID

- .N‘;-l[ t(!(J)l-j’Fb!j;dJ) 1

-N/2
N‘j’,lt 45 Expl(-1/24 )01 1,

where

Qj - (x(j)-jl-l?!j)'(!(j)-njl-l?gj).

or, equivalently, P

(3.1.1)  Ly@FADIN = oIV ey 607N,

where

(3.1.8) Q= (Y-1u'~FA’)'(Y-1n'-FA').

As pointed out by Anderson and Rubin(1956), however, this likelihood is not

bounded above, that is, if any one of the quadratic forms, Qj‘ say, in the

exponent is equal to zero the likelibood goes to infinity. The simplest way to

avoid this problem is to extend the within-variable homoscedasticity assumption

(3.1.4) to across—variable homoscedasticity, that is, A
(3.1.9 !(j) : NN(Q . dIN ), j=1.2,....ps :::f:
where d is a scalar common to all the varisbles. -

..................................................
.................................................
.................................

...................
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The MLE under this model with the restrictions (3.1.2) and (3.1.3) with

CF.Ir is given by the Eckart-Young (1936) decomposition of the data matrix -
Y after columm centering. That is, the estimates of m, F, and A are given,

respectively, by the column means of Y matrix, the first r eigen vectors of
JYY'J normalized s0 as to satisfy (3.1.3), and the first r eigen vectors of the
sample dispersion matrix S normalized so that A’A = L, the eigen value matrix,
This is also the least squares solution for the model (3.1.1) and the resulting
F matrix is equivalent to the first r prinoipal component scores of the matrix
JY, The distributional assumption (3.1.9), which assumes that all the
variables have equal unique variances, however, seems to be too restrictive
evon if the original variables have the same variances. A better way is to
assume either that the unique variances are known or that they are proportional
to some known constants. For example, in case of supposedly unidimensioanl -
tests, the assumption that the error variance of each test is proportional to
the length, as in Feldt (1975), may be used.

Another way to avoid the problem is to have replications. Denoting the

th (k) (k)

k" replication by Y and the oorresponding error term by U,

k=1,2,...,q, the likelihood of the parameters given q replications is expressed
as

(1),Y(2) (q)

(3.1.10) Ly(m,F,A,DIY v, X V)

= 101" N g -1/2)ect0 7N, 1,

where

(aap =)t o 1, S
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and

(x)

3.1.12) a'® = ¥

(k)

-1m'-FA’) (Y " ~1m'-FA').

(k)

Since the diagonal elements of Q+ cannot be zero (assuming each Y is

distinct) the likelihood is bounded above, The following estimating equations
are given by taking the derivatives of the likelihood plus the Lagrange term to

enforce (3.1.3) with Cptlt.
L
tr[(F'F - (N)IN)L 1,

.
where L is the r x r symmetric unknown matrix,

and setting them equal to zero. (See the Appendix for matrix differentiation.)

(3.1.13) m= (1/NY'‘1,

e Y41 g,

(3.1.14) D = (1/qN)diag(Q,).

where Y°

(3.1.15) A = (1/N)Y°'JF.

- - P -
(3.1.16) F = 7¥'d taarp st 1,

The last two equations reduce to

3.1.11n 0 Yar =0 Vn, ‘3
- 4

where
g = (/N 0 Y3y ogyepl/2, -j

L is a r £ r arbitrary disgonal matrix, *

and T is a r x r arbitrary orthonormal matrix, 5
and -j

.........
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(3.1.18) FT = NJY'D AL,
Arbitrariness of T and L accounts for the orthogonsl rotation. Therefore, by

sotting T = Ir' the conditional estimate of A given D is given as the eigen

vectors of R normalized such that A'D-IA = [, the eigen values.

Some other treatments of this problem have been proposed in
Anderson snd Rubin(1956), Anderson (1984), and McDonald(1979b). While the
former two consider the estimation of the factor loadings snd the error
variances on the basis of the noncentral Wishart distribution with the

restrictions (3.1.2) and (3.1,.3) with CF = Ir‘ the latter estimates the

factor scores as well as the factor loadings and the error variances by
maximizing the likelihood ratio. However, the method fails to produce unique
estimates of the factor scores in the sense that all the estimates that are
produced by the Guttman/Kestelman formula in the Appendix also maximize the
likelihood ratio.

A Bayesian treatment of this model will be proposed in the next Chapter.

The Congeneric Test Model

Consider the situation io which an instructor is to grade his/her students
on the basis of, say, three examinations such as two midterms and one final.
This is usually done by calculating a certain composite score such as
A) mean of raw scores,
or

B) mean of standardized scores.

............
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When we assume that there is only one common factor, that is, r = 1, the

FFA model becomes, by denoting the first column of F and A by f and a,

respectively,

(3.2.1) Y=1n" +fa’' + 0,

or

=m, + f a +u » igllzlitllND j':llzn-oolpa

Yig "% 7T YN T My
which states, as in the genmeral case, that the observed score is the sum of
non—-random and random parts, namely, , respectively,

mj+fi.j and uij

with a particular structure being enforced on the nmon—random part. IHowever,
the way we decompose the observed score into two parts is pot unique. As
pointed out by Lord and Novick 1968, Chapters 2 and 24, we can have another
decomposition, namely, the classical test theoretic decomposition,

(3.2.2) yij =t,, +e,,, i=1,2,,..,N, j=1,2,...,p,

ij ij

where t, . is defined as a non-random part over the propensity distribution,

ij

i.e., replications. These two decompositions sometimes contradict each other
since the factor analytic decomposition is usually made without any reference
to the replications. That is, the unique score in the factor analytic
decomposition may contain some of the non-random elements, namely, the specific
score of each variable defined over replications. However, when we deal with
only one set of observations, Y, it is impossible to distinguish the specific
score from the unique score. Therefore, we proceed for the present as if the
specific scores are zero.

With this understanding in mind (3,2.1) states that the non-random part of

the observed score of each test, the true score, is linearly related to each

R N
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(4.2.17) L, = }jzll L. ) + comst.,

where

(4.2.18) LDj' = -n 1n(s/2) + 2 In Gamma(n/2) + (n+2) In dj + s/dj.

For the second stage prior distributions we only assume the mmtual
independence

(4.2.19) f(HlS)=f(ﬂF.H.ﬂD|S)

=~fCH | s ) £CH, IS, ) eCH |80,
and do not elaborate the specific form until it becomes necessary. When a
priori zeros are to be specified they should be so specified here. The sasiest
way is to assume a spike function as the second stage prior distribution of the

hyperparameters whose elements are assumed to be concentrated around zero.

Posterior Joint Distribution

Using the Bayes' theorem the posterior joint distribution of F, A, D, and
I is given as
(4.3.1) £(F, A, D, HIS, Y) =€(YIF,A,D) £(F,A,DIH) £(HIS),

Minus twice the log of this density is given by

(4.3.2) L= I‘FAD + LF + LA th, ¢+ 1.ﬂ + const.
N
= JimaU Lypy * Ly 1 # Ly + Ly + Ly + comst,

_\p
= §j=1[ Leag *Lay * lpy ! * g * Ly * comst,

where

(4.3.3) L, = te( Y-FA ) Y Y-FA* )¢ + N 1a IDI,

W e T Ty e T e e e e e e
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(4.2.11) £(D | B ) = 1<§_1[ a1 H) I,

where

(4.2.12) £ 4, | Hy) = (8/2)™2/Gamma (n/2) d;—uz)(w)

X EXP[ ('1/2)3/dj ]' j'lnzvt-.np»

whero Gamma(x) is the gamma function.

Note that f and a, which do not have any subsoript or which do have subscript

k, are not parameters but hyperparameters.

The corresponding minus twice the log demsities are,

(4.2.13) L = )N [ L. 1 + oonst.,

where

(4.2 L = 1a lcl + £ Gl
if globally exchangeable, i=1,2,..., N,
=1nlc | + (Si-gk)'cgi(si-fk)
if locally exchangeable and i belongs to subgroup k, k=1.2.....GF.

(4.2.15) L Ejp ( L 1 + const.,

where

(4.2,16) LAJ = 1n IcAI + (gj-y'c;l(sj-s)»

if globally exchangeable, j=1,2,..., p,

= In |C | + ('j-'k) CAk 2- s

if locally exchangeable and j belongs to subgroup k, k=1,2
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on the first dimension, and the members of the second group have high loadings

on the second dimension, we may specify that a. and a, are concentrated

1 2

around [111.0] and [0,322]. respectively, This is a similar treatment of a

priori zeros described in Rubin and Thayer (1982) but more general in the sense
that this does not force the paramsters to be zero, avoiding a potential
specification error.

The density functions are, respectively,
(427 €((F 1) = &_(€Cg 18]
where
(4.2.8) £0 £ | o)

-1/2 _ s |
= lcl Exp[(-1/2)f,C.'£.1,
if globally exchangeable, i=1,2,..., N,

== lch

if locally exchangeable and i belongs to subgroup k, k=1.2.....qp.

-1/2 e yoe e
| Expl(-1/2) (£ ~f,) "G, (£.-£)),

(4.2.9) £C A | B, ) 1\J,It £( 3 8,01,

where

(4.2.10) £( 8, I8,

== ICAl-'ll2 Expl(~1/2)(a -g)'C;I(g -],

J J

if globally exchangeable, j=1,2,..., p.

-1/2 o1,
= lc,, | Exp((-1/2) (a,-2,) 'Cy; (a,-8,)],

if locally exchangeable and j belongs to subgroup k, k=1,2,..., A’

-------------------------




(4.2.6) 51 : Nr( a8 ch' ), iid, if j belomgs to group k’,

k"l;z.-cunG ’

where L and C, , are, respectively, rx 1 and r x r.

Ak

In this case we have

Hp = [ (£, Co ), k=1,2,...,6p 1,

and

HA' [ ( '.'k' cAk )p k‘lgzpo-olGA ]o

A locally exchangeable prior distribution for the error variance is not

considered here since in real application they can almost always be considered

to be globally exchangeable. We denote the number of observations in the kth

locally exchangeable group by e and the number of variables in the k‘th

locally exchangeable group by n,. ,. It should be noted that (4.2.5) and

(4.3.6) can be used independently. That is, for example, we may have a
globally exchangeable prior on the factor scores and a locally exchangeable
prior on the factor loadings. Also, by setting one of the inverse matrices of
the dispersion hyperparameters equal to zero, we can handle those
observations/variables whose a priori grouping information is not clear. That
is, those observations/variables with zero precision hyperparameter matrix are
treated as having uniform prior distributions.

When some of the location hyperparameters are assumed to be concentrated
around zero we may specify this in the specification of the second stage prior

distribution. For example, if there are two locally exchangeable group+ >f the

variasbles and we believe that the members of the first group have high loadings

)
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dispersion matrix,

(4.2.3) a, : N (a3, C, ), j=1,2,...,p, iid,

J

where & is the r x 1 vector of mean and C, is the r x r
dispersion matrix,

42,4 4, : X2(n,s),

where X—z( n,s ) indicates the inverted chi square distribution
with the degrees of freedom n and mean s/(n-2).

With the previous notation we have
HF = [ gp CF ]o

BA = a, CA ]l

and

HD=[n.sl.

The three sets of prior distributions, respectively, state that all the factor
scores, factor loadings, and the error variances are globally exchangeabls,

Since the model is based on column centered data and considering the

miltiplicative redundancy between F and A, we set g-gr and CF.Ir’ The

treatment of the oblique model will be stated later.

-

When the globally ex¢hangeable prior distributions are not appropriate we :

may use the locally exchangeable prior distributions: .
(4.2.5) £, : N (£, G, ), 1id, if i belongs to group k, .

r1,2,....Gp 5

where _f_k and ch are, respectively, rx 1l and r x r,
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variables roequire heavy knowledge of vocabulary and the rest are more content
oriented we may a priori assume that there are two locally exchangeable groups
of variables. Also, if we believe that there are some gender differences in
torms of the factor soores but that the factor loadings are invariant across
sex, we may assumé the exchangeability of factor scores within boys and girls,
but not globally. The model proposed here is goneral emough to handle any of
these situation.

We consider the following forms for the prior distributions of the
parameters.

(4.2.1) £(F,A,D|H) = f(FIHF) t‘(AIHA) f(D|HD).
where HF. HA' and HD are the first stage hyperparameters of the prior

distribution of F, A, and D, respectively. The independence assumption of F
and (A, D) seems to be natural since knowledge of the characteristics of each
subject usually does not affect knowledge of the characteristics of variables.

The independence of A and D may not seem to represent the real situation

considering the fact that the expected dispersion matrix of the observation is
expressed as the sum of AA’ and D, but this is not the case since the prior
distributions are to be specified prior to the data collection., That is, we
argue that A and D are independent until we calculate the sample dispersion " 1
matrix.

For each component we first assume the following globally exchangeable

e
ol

. e

2od  ahos A A s

prior distributions: =

(4.2.2) £, : N( £, C_ ), i=1,2,...,N, iid,
-1 r - F
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the formulae the range is not specified. The second stage hyperparameter S is
typically specified to provide a relatively flat prior distribution for the H,
expressing ignorance about the location. This type of prior distribution is
called an exchangeable prior distibution. It should be noted that the first
stage hyperparameters H can be constant if the distribution of H is really
tight,

As s variation of the exchangeable prior presented sbove, we may have the
following locally exchangeable prior.

P : f(P | a‘ ) , iid, if k belongs to a subset g,
B : £(H | s8), g=1,2,...,6, iid.
8 8

That is, we divide k parameters into G subsets and assume the exchangeability
within each subset. Since the exchangeability assumption is crucial in real
data analysis much caution should be excercized whem it is incorporated.

In the factor analytic context there are N individuals, each of which is

regarded as a population, and the location f i of each individual is to be

estimatod, Also, each of the p variables represents p populations and their

paramoters a.’'s and 4 's are to be estimated. Unless we are to perform

J J

some confirmatory study it is often difficult to specify the informative prior
distributions for all of N+(r+l1)p parameters. Also, it is often the case that
we know that some of the tests or some of the subjects are very similar to each
other prior to dats collection. Therefore, the exchangeable prior seems to fit

the typical application of the model very well., For example, if all the

variables to be analyzed are supposed to measure reading skills we may a priori

assume that those variables are exchangeable. However, if half of the o

...........................
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that is proper. Second, if we have very weak knowledge we use s noninformative
prior distribution that is improper. The third case is that of an exchangeable
prior distribution and is applicable when there are several of parameters which
represent the same characteristics, say, location, of different populations and
we believe those parameters are similar to cach other. For example, when the
means of m normal populations are to be estimated, we may know, a priori, that
those m values are similar to each other but may not be able to precisely
specify the ‘mean’ of these m values.

The relative similarity of prior values can be expressed as the following
hierarchical forms. According to the wodel stated above it is assumed that

pk : f( ’k l n ). k-lizloo.l‘l iid'

B : f(H|S),

where P = | Py» Pyr eeeo Py 1’ is the m x 1 parameter vector of imterest,

H is the nl x 1 first stage hyperparameter vector and S is the n2 x 1 second
stage hyperparameter for the prior paramster H.

That is, we express the relative similarity of all parameters by assuming
that they come from the same distribution and express the uncertainty of that
distribution by the probabilistic structure of the hyperparameters. The prior

distribution of the pk" can be expressed without using H if we marginslize

the joint distribution of P and H with respect to H, In this case the prior
distributioz »f P can be written as

t(Ppls)y=/eCPlH)ECH]|S)dn
Since it is usually the case that n2 ¢ n1 ( m, it should be easier to specify
the prior constant 8, It should be understood that the range of integratioms

is the domain of the varisbles to be integrated out. To avoid complexity im
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£y, | P A D)=y, |F g,

SIS |

(-1/2)N
J

z Exp( (-1/2) (z(J)-F!j)'(x(J)-F!J)/dJ ).

d

Here, the symbol == is again vsed to denote the proportionality.

Minns twice the log likelihood is
(4.1.5) Lg, =-21n £( Y | B, A, D)
= tr( Y-FA’ )D Y( Y-FA' )' + N 1n ID| + const.
-}N[L ] + N 1n {D] + const
i=1" "AFi °*
where

-1
Ly = (2,7AL,) D (z-AL),

- 2121[ Lppy ) * N 1n IDl + const.,

where

l‘FAj - (2(”—133’)'(10)-?51)/(11.
In the following sections the subscript i always refers to the observations,

and the subscript j to the variables.

Prior Distributions

In goneral there are three ways to express our prior beliefs about the
paramsters of interest in a Bayesian estimation procedure. First, if we have

strong knowledge of the parameters we use an informative prior distridbution
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where

X ) is the N x 1 vector of ceatered observations for the variable j, *

9 is the N x 1 vector or the error terms for the varisble j,

3

F= 51, £.0 coes SN 1’ is the N x r factor score matrix.

Collectively, we may write,
(4.1.3) Y=FA’' + 1,

where
¥Im= [ !(1), !(2)' XX W] l(p) ]
= [ xlp !2. eeop !N ]’p N X p.

U=1033). 8y =+» Bp)

1
.[!‘!2""’*]" prc

Therefore, the likelihood of F, A, and D given Y can be written as
(4.1,4) £(Y|F, A, D) ==

ol V2N pep( (-1/2) el (-RAOD (XA 1 )

- Tyl £y, | F. A D),

where

d f(y, IF,AD)=1Cyg | £.4 D)

Ini~4/2

) x Exp( (-1/2) (z,-A£)'D (g -AL)) .

- P
Kj_ll £( X¢y) IF, A, D), .

, where
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m = (U/NY'L,

and do not treat it as a model parameter in order to have simpler form.
Therefore, it should be understood that the observations are centered, i.e.,
each observed variable has a zero sample mean.

We state the model as follows.

(4-1.1) zi = A£1 + g i.lnznoo'oNl

i’
., :N(O, D), i=1,2,...,N, iid,
17 p

where

Y; is the p x 1 vector of the column centered observations for subject i,
8, is the p x 1 vector of the error terms for subject i,
- ’ =
£i [ fil. fu. ssey f’.r] » i 1.2,....".
is the r x 1 factor score vector for observation i,
= ’
A [ !1’ !2. es oy !p ]

where _._j = [ ‘jl. .jz. es e .jt] » 1'1.2.-...9.

is the r x 1 factor loading vector for the variable j,
is the p x r matrix of the factor loadings,
and

D = diagl dl' dz. cees dp 1 is the p x p diagonal

dispersion matrix of the error term.
The diagonslity of the D matrix ensbles us to reexpress the model
variable wise as follows,

(40102) Z(J) = F‘.‘j + “(j)‘ j-lpzvoo.lpl

!(j) : NN( Q » dJIN )p 1-1'2|'oilpi iid.

Iy . .
R T ORI ,
o an o e

.......................



38

CHAPIER IV

THE BAYESIAN FACTOR ANALYSIS

In this chapter s new Bayesian factor analytic model, where the factor
scores as woll as the factor loadings and the error variances are treated as
one of the parameters to be estimated, is developed. The presentatiom is fully
Bayesian in the sense that all the parameters have prior distributions and the
inference is based on their posterior distributions, After the description of

the model and the prior distributions the posterior joint distribution of all

the parameters is doerived. Then, the joint distribution is marginalized and/or
conditionalized to obtain the point estimates. This enables us to reduce the
factor score indeterminacy problem to the usual problem of the choice of point
estimate, namely, mean, mode, or something else of the posterior distribution
of ths factor scores. Because the EN algorithm and its varistinos are used for
the marginalization of the posterior joint distribution a brief description of

the algorithm is provided after the derivation of the posterior distribution.

The Model
R
In this chapter a model similar to the one used in the fixed factor -',:'_:
T
IBA
analysis is used. Since m is defined as the grand mean we replace it by the -
T
b M
sample mean, namely, .'4
-f'.w
.
e
."‘q
S
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section, Thus, within the framework of MIE it is impossible to estimate the ;;-'

parameters of the general congemeric model. Sowe modifications such as the

across test homoscedasticity in (3.1.9) or

AR
Vo, 7, 01, v

(3.2.7) 'j - 1, Jalozpoootpl

and d, is proportional to the observed score variance

J

of test j,
are necessary to deal with the form more general than the parallel test model. -
With the former assumption, with some restrictions concerning the scale and the
origin of the true score such as (3.1.2) and (3.1.3), we bave the first eigen

vector of JYY'J as the MLE of f, and with the latter, we have B). ne

Therefore, if we are to calculate a composite score based on the general

. a s o+ & W &
.I-.. -

congensric test model, the Bayesian unidimensional FFA model proposed in the

next chapter is the only possible way. It should be also noted that

Lindley(1971a) has proposed a Bayesian solution to the parallel test model with

' : '..' . .
Sy ‘.','- FI AN Y

an exchangesble prior distribution of the factor score.
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'h other. This is sometimes referred to the congeneric test model, Kristof(1974), :
g PFeldt(1975), and contains the parallel test model or the tau-equivalent test - .
; model as a special case. That is, if all the a’'s are equal we have the
essentially tau-equivalent test model, if, in addition, all the m's are equal :

we have the tau-equivalent test model, and if, in addition, all the unique
variances are equal we have the parallel test model. Although classical test
theory does not assume the strong form of the distributional assumption nor
within test homoscedastisity such as

(3.2,3) w, :NO,d

1j . ). 1’1,2,.-.,N, j-l,z...-.p.

J

we assume this to facilitate the comparison. This assumption, which specifies
the characteristic of the error term associated with each test, does not seem
to be strong compared to the mormality assumption of esch subject’s true score
used in the RFA model.

With assumption (3.2.3) and the parallel test assumption,

(3.2.4) ﬂj = o. j‘lpzooooppn

(3.205) = 1' j.llzi".ip'

*
and

(3.2.6) d.i =4, j=1,2,...,p,

it can be shown that the MLE of the factor score is given by A) in the example
above.

However, if we allow the unique variance to vary freely in order to deal
with the tau-equivalent models it can be shown that the MLE does not exist even

with the restrictions (3.2.4) and (3.2.5). This is due to the same

unboundedness of the L3 likelihood function described in the previous .
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1 -1 -
(4.3.4) L. = (7,-AL)'D  (y-Af),

(4.3.5) l'FAj = (x(j)-ng)'(y(j)—ng)/dj.

4.3.6) Ly=)P L1,

(4.3.7) LDj = le' +Nln dj

= -n 1n(s/2) + 2 1n Gamma(n/2) + (N+n+2) 1n dj + s/dj.

and

(4.3.8) Ly =-21nf(H I s).

Unlike the l..3 likelihood in Chapter III the posterior joint distribution is

not unbounded above due to the term s/d, introduced by the prior distribution

J

of the error variance. However, it is found that, unless we have the value of
s which is comparable to the magnitude of the residual sum of squares,

RSS.i = (!(j)-FEj

the joint mode of (4.3.1) exists in the region where some of the error

)'(z(J)-F!j).

variances are close to zero.

Note that (4.3.1) also gives various conditional distributions by droping
the factors which consist purely of the parameters/hyperparameters on whioh we
would like to condition, In terms of (4.3.2), minus twice the log posterior

conditional distribution of, for example, the factor scores and the factor

loadings given the error variances and the hyperparameters is given by

l‘F AD+“\‘-’+LA+°°“t .
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Posterior Marginal Distributions

When the globally exchangeable prior is used either for the factor scores
or for the factor loadings, following two marginal distributions can be derived
analytically.

(4.4.1) f(F,D,BEIlS, Y)=/f(F, A D HIS Y)f(AlSs)da

= ff(YlF.A,D)f(AlEA)dA f(FlHF)f(DlHD)f(Hls)

) ' -1/2
oyl | FO,Fred I x

' ' -1 -
Exp( (-1/2)(1(1)-1"‘3) (FC,F +deN) (z(j) Fa) ) 1
x f(FlﬂF) f(DlHD) £(Hls).

(4.4.2) £(A, D, HIS, Y)=/f(F,A, D, B|S, Y)f(FIS)AF

== ff(YlF.A.D)f(FlHF)dF f(AlHA)f(DlliD)f(HIS)

l(-1/2)N 1

Exp( (-1/2) te( Y'Y D ~ ) )

=|ACF.A'+D

x f(AlHA) f(DlﬂD) £(8]S).

Also, with the globally exchangeable prior of the error variances, we have
(4.4.3) f(F, A, H| S, Y)=/f(F, A, D,HIS Y)dD

- 1P =(N+n)/2
181[ (RSS.j +s) ]

n/2

x p (8/2) Gamma ( (N+n)/2) / Gamma(n/2)

z f(FlﬂF) f(AlHA) £(HIS),
where RSS'j = (x(j)-ng)'(x(j)-ng).

and Gamma(x) is the Gammsa function,

Note that the posterior marginal distribution of A, D, and H is

dmadion,

BN ..
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ossentially equivalent to the familiar likelihood on which the usual MLE is
based. In this sense our approach includes both the random and the fixed
factor analytic model reviewed in the previous chapters.

Theoretically, when we are interested in the estimation of the factor
scores and the factor loadings we may be able to use the joint mode of the
marginal distribution of the factor scores and the factor loadings as the point
estimates., However, since the distribution given in (4.3.3) has the same
tendency as the joint posterior distribution given in (4.3.1), it is not
desirable to use the mode of (4.3.3) as the estimate., That is, the mode is

close to the region where some of the dj's are zero. (It can be shown that

(4.4.1) also has the same characteristic.) On the other hand, the marginal
distributions given in (4.4.1) and (4.4.2), contain the location parameter F or
A and the scale parameter D togoether. Therefore, the modes of these deasities .
are, in this sense, still joint modes ( e.g. (F,D) or (A,D) ) and suffer the
criticism of 0'Hagan (1976), or Fienberg (1972). Also, Rubin and Thayer
(1982), who derived the MLE from the equivalent likelihood, note that
‘estimation of variances should be from their marginal likelihood.’ The poimt
is that the joint mode or the joint MLE tends to underestimate the error
variances due to the lack of degrees of freedom adjustment, often resulting in
the Heywood case. Therefore, some additional marginalization is necessary.

Since we have the hyperparameters in the posterior distribution we first
marginalize all the parameters in order to have point estimates of the
hyperparameters. That is, the point estimates of the hyperparameters are given
by the mode of

(4.4.4) £(HIS, Y)=f[ [ £(F A, D, BIS, Y) dF dA dD.
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) Then, conditioned on the obtained values of the hyperpsrameters, the point
estimate of the oerror variance is derived as the mode of
g 4.4.9) £(DIH S Y)=//f(F, A DIHS, Y)dFdA.
. Then, conditioned on the point estimates of the error variances and the

hyperparameters, we estimate the factor scores and the factor loadings as the
mode of

k (4.4.6) f(F,AlD, 4,8, Y),

(4.4 f(FID, B s, Y)= [£(F, AlD H 8 Y)dA,

or

(4.4.8) £CAID H S, Y)= [E(F,AlD H S Y) dF.

As O’Hagan (1976) noted, the above conditional modes are considered to be
better estimate than the marginal mode. When the main interest of the anslysis
is the estimation of the factor loadings, the mode of (4.4.8) should be used.
When the main interest of the analysis is the estimation of the factor scores
the mode of (4.4.7) should be used. Finally, if both are of interest the mode
of (4.4.6) should be used,

Since analytic marginalization is impossible we use some variations of the
EM algorithm, Dempster, et. al. (1977), in the later section, A brief
descriptions of the EM algorithm and its variations are presented in the mext

section,

The EM Algorithm and Its Variations

Given s set of random variables ( uw , v ), and their joint demsity

function, f( u,v | p ), where, p is the psrameter which determines the density,
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the EM algorithm can be used to find the maximum likelihood estimate

on the basis of the marginslized likelihood

s(slp)= 1/ fCu,vlp)rdav.

In the original article by Dempster, et.al,(1977), a set ( u, v ) is refered to
complete data, u, incomplete data, and v, missing data. The terminology makes

soenso when v represents the portion of observations which are missing but in

more general applications it should be understood that the random variables to

be integrated out are refered to as missing data. ( See the following

examples.) The algorithm is an iterative process consisting of two steps,

namely, the E-step and the M-step. Assuming that an estimate of p, say, By

is given, for each iteration the E-step calculates the conditional expectation

of In( f( u,v | p) ) given y end By namely,
E(ulp) =/ Intf(z,ylp)t(yla.p,) dv,
and in the M-step Ev(glp) is maximized with respect to p assuming the

parameters of the conditional distribution of v, say v , are constant. That

is, although the parameter !‘. which is a function of u, and By is
included in Ev(glg) it is treated as a constant when the derivative of Bv
is taken, Notation such as Ev(glg) should not be confused with the simple
expectation sign E[.]. The successive application of these two steps will
usvally result in the MLE of the marginal I1ikelihood s(!_llg) when the process

converges. It is assumed that some initial value of p is given prior to the
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iteration. See Wu (1983) for the conditions required for the convergence.
When the complete data has the distribution which belongs to the regular
exponential family the conditional expectation of the sufficient statistics,

t(u,v), may be used for the calculation since the log likelihood can be writen

1n f(u,vlp) = p’t(u,v) + 1n a(p) + conmst.,
where a(p) is a funotion of p only,
and const. is a constant term which does not include p.
When p has a prior distributionm, £(plH), the EM algorithm can be used to

find the posterior mode of

g(plu,B)=/f(p,viuw H)dy

= [ f(u,vip)dy £(pim.
In this case, the E-step calculates the conditional expectation with respect to
f(vlu,p,H), that is,
B (plu.®) =/ 1nlf(u,ylp)if(ylu,p.B)dy,
and the N-step maximizes this with respect to p treating the parameter of the
conditionsl distribution of v as a constant., When the process converges we
presume to have the posterior marginal mode of p with v integrated out.

Now, suppose we have an observation Y, whose distribution is described by
£(Y|P), and a hierarchical prior distribution of P of the form f(PIH)£(HIS),
where H is the first stage hyperparameter, and S, the second stage

hyperparameter. The posterior joint distribution of P and H is given by

.................................
..............................

...............................
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fCP, BIS) = £YIP) £(PIB) £(HlS),
and, the posterior marginal distribution of H with P integrated out by -
s(H|S) =/ ¢pHlS) ap.
In order to estimate the modal value of H of the marginal posterior
distribution g, we can also use the EM algorithm by identifying

u=Y, v=P, and p = H,

When the minimization of minus (twice) the log likelihood is preferred to
the maximization due to its simplicity, its expectation,

E(ulp) = (-2) J 1af(g,vlp)f(vlu,p)av, should be calculated in the
E-step and, in the M-step, it should Ve minimized with respect to p.

One of the advantages of the EM slgorithm over the direct maximization of

a(g'g) is its simplicity. In the usual application, where (u,v) have
multivariate normal distribution, Ev is much easier to work with. That is,

the maximization can be done analytically. Another advantage is its
flexibility. Bock and Aitkin (1981) used its variation in order to have
marginal MLE of the item parameters under the latent trait model where the

conditional expectation of v is plugged into the complete log likelihood

instead of taking its expectation. We propose another variation in order to

marginalize with respect to several sets of missing data, say, !1. Voo ese

in the later section.

SN LRI
P A . P
) le e ' 2

In the following examples the actusl application of the EM algorithm will
be explained. The first example is a straightforward one where some of the
observations are missing. The second example shows how we treat a subset of Y

1

the parameters as the missing observations.
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Example 1: Estimation of Multivariate Normal Parameters

Let Z be the n x p data matrix contalning n observations from

Np( m, W), Now, assume a part of Z is missing. That is, let

z=(z," ]

where n=nl+n2, and

I 1-1.2.....111, be p x 1 vector of observation,
) 0 1-1.2.....12. be p x 1 vector where

!'1 - [ !i' ’ ‘-’i' ]'

!i' i=1,2,...,02, and l"’i. i=1,2,...,n2, are, 3

respectively, pl x 1 and p2 x 1 vectors and p=pl+pl.

It should be understood that .‘21" are missing.

g
With the notation used in the previous section, we have, .41
=

-
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=[b,, i=L2,....m2 ],

and

p=[(mand V],
and we would like to estimate m and W on the basis of

the marginal likelihood

s(Xa, i=1,2,...02 [ m¥W) =S 2(Z|uV)ab.

(R i St S s B St Tl St A 3

See Orchard and Woodbury (1972) for theoretical basis of this method.

Now, minus twice the log likelihood of (m,W) given Z,

L= alalwl + }121( (gi-g)"-l(gi-!) ) + comst.

The E-step.

1. Conditional Distribution of gi'- given X and A.

The conditional distribution of !1 given X and L} is

| x : N (b, V)
Ei 'A . Pz !i’ »

vhere

. -1
By = my * Yo"y

vV o=w_-w.wly

22 721711712°
where
! = [ h'p _!2' ]'n
1xpl1lxp2

the complete

-------

data, is

..........
.....
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and
Y=1% Y

Y1 %2 d-

2. Conditional Expectation of -2 log likelihood.
With obvious notation
vi-fw?, v
v 2
the i*? tern in the summation which includes ’gi can be

decomposed as

e |
Q =(y =V (y-=m)
w1l
-(.‘.i-!]_)'l(!i_!l)
w2l
+2 Caom VWb om )

2
’
+ Cbom )W b, ).
Therefore, the conditional expectation of Qi is

E(Q )X g, i=1,2,...,02)

1.
=§(Qi|gi)

il
- (2 )W am)

wlp®
+2(2i.-!1)'2(_b_1"!2)

. 22, . *
+ Cbrm VWb )

oy e

..........
.................................
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+ Py,
= ( )_:-g YW 1;-5 ) + uv”v',
. .
where y. = [ a,'. b.,* 1",

{See Appendix for the expectation of quadratic form.)
Therefore,

B(LIX a,i<1,2,...,02) =E;(m¥]|XA)

i
- }:1( (z,-®) "_1(51—!) )
+ ZEI( (!:-g) "_1(1:-!) )
+ n2 tr‘zzv. + const,

The MN-step

By differentiating Eg( m,¥ | X, a,,i=1,2,...,02 )

with respect to m and 'i.i, ij= 11, 12, and 22,

( see the Appendix for the Matrix Differentiation, )

and solving the resulting normal equations, we have

2~ (WX, Y, %
)
+ x
= (1/a) C.,, ij = 11, 12, and 21,
'U (1/n) ij ij=11, 12, » 1 7
and R
+ * J
'22 = (1/n) ( sz +n2V ),

where C is the sample mean corrected sum of squares and cross product . 1
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matrix and Ci 's are its partition similar to the ome for W,

J

» )
Note that hi" and V are treated as constants when taking the
derivatives. The successive application of these two steps will results in the

marginal MLE of » and ¥ with the missing data integrated out, namely, !+ and

+
¥ , at the convergence point.

Example 2: Two-Way Random Effect ANOVA without Interaction

Let us consider the two way random effect ANOVA model without
interactions,

yij = .i + bj + Qijp i’lozaOOonpn j"l.z.....q.

where

.ij M N( 0. SE ). i=1.2“n.P. jslnzooooQQn 1idl

.i : N( m, SA ). 1‘152:-ocppl ild'

and

bj H N( 0. ’B )p j‘1'230c05Q! iid,

Note that the overall mean is taken care of by the mean of parameters, .,

namely, m, Also, to avoid the complexity, no replication is made,

Writing the model using the linear regression form, we have

Y=Xp +e,

where

- ’ o
LA S PO SVLIRCILR /PUR (Y LICERTIR A AR L %

! - [ .110 .120 oo ey .lq. .2‘. LN 'pq] [ ] N X 1. “43
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\ lq Iq J » PG X (p"’q’:

B=0a',b" 1", (ptq) x1,

= 1]
[ll. 8,0 eees IP] , px1,

(-

= b b,, ---nb ]'3 xll
( q q

1" "2

-]

:Np*fq(!'c)'

= " o ’ " 1.
n [nl_p % ] (p+q) z

C= ’AIp

'BIq . (p+q) x (p+q).

By integrating P out amalytically, we see that y has the pq-variate normal

distribution with
mean of yij =m,
and

cov( yij'ykl ) = dik'A + djlsB + dikdjl‘E'

where dij is the Kronecker'’s delta notation.

Instead of working directly on the marginal likelihood implied above, we

pro-eed as follows.

Let us assume that [ y, § ] is the complete data and B is the missing

........................................
............
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part. That is

u=y, v=p,andp=1(3s, 8y Spe and m ],
Minus twice the log likelihood of the complete data is

L =pqin(sy) + ( y X )'( 2B ) / 3

+In lcl + ( pm yee B—m ) + comst.

The E-step

1. Conditional Distribution of § given y.

By rearranging two quadratic forms we see that

L ]
Elx:Np+q(§.V ),

where
* - -t -
v =(sE1x'x+c1)1.
and
* -1
Q‘V(SEX'!"‘C ﬂ)a

L L
=[a',b']1], say.

( See the completion of sum of squares trick in the Appendix. )

2. Conditional Expectation of L given y.

§(L|z)=Ep(n. 'A"B"EI!)
. . .
= pq In(sy) + (y-XB )'(y-XB )/sp + teX'XV /s,
+1n lcl + (Q.—g)'c.l(ﬂ‘-g) + trC—lv‘ + const

= pa In(sg) + ( (FXB) ' (z X8 )4teX'XV ) / oy

....................
----------------
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and
+ L BN
2 = (F F) e X"
Therefore, conditioned on x(j). dj’ H, and S, we have
4.6.3.3.) a ID, B S, Y : N(a,Q)
. L d - . !J » » » . t -a‘j' j ’

and these conditional distributions are independent for j=1,2,...,p. The joint

*
density is denoted by £ ( A | D, H, S, Y ), which is the product of each

normal density in (4.6.3.3). When some of the elements of D is zero the
&
calculation of Q j's should be performed using the matrix inversion formula

2 in the Appendix,
As we noted, depending on the method of quasi marginalization, we can

either take the expectation of EF(A.D.Bls.Y) with respect to the conditional

distribution of A or we can analytically integrate A out. First we consider

taking the expectation of EF
*
(4.6.3.4) EAF(D.Hls.Y) =f EF(A.D.IHS.Y) f (AID,H,S,Y) d A
=§’[I(LF A +Na.'Va)da, l
Jj=1 Aj* Aj -j =] =J

+ LF‘ + LD + LH + const, -

P L2 * & ¢ &
.-.} [ ( RSS, +tr[(F 'F +N V )Q,]
j=1 j i

FNa Ve ) /d, ] R
5% o

+LA.+LF.+LD+LH+const..

where .
~

D
NN

.
@

s ) o
Sbo Ak aal'a

« e a el e et e T . S e e . e - . e .
- > . I I R I PR R AT L P o e A St et " - - ~ <. ‘. b - - e .
ool e e e e e T e e e e T e e T e L
LY PRI W Py U TR TP J W PP N TS N s e 4 a2 g @ " N e a . e 7. 7 * - M ‘e *, e - £, * - .
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Now consider F‘F( A, D, HI S, Y) in (4.6.2.1) as minus twice the log
posterior density of A, D, and H given S and Y and denote the density by

.
f (A,D,HIS,Y). Then, by writing variable wise, we have

(4.6.3.1) E (A, D, H s, Y)

= )R (RSS® + Na.'Va)/d, +L.. )
j=1 J =i =i 3 Aj

+LF.+LD+Lﬂ+const.

where
RSS. = (y,..-F &.)'(y, ..-F a.)
3T T g T A

Again using the projection operator trick 1 and the sum of squares

trick in the Appendix twice, we have

.
‘Vald

(4.6.3.2) Ly, o + Ly, + N2 'Va/d,

J

s -1
= (a,~a,)’'Q, (a
i<y 3 -

E
-a.)
=)

J

+2'Cla

+ & &
+a8.'F'Fa,d
2 25" A

R ' /d
LI TI T (R T

where

L

* . s _3 * -]
Q =( (1/d,)F 'F +C_"+(N/d,)V ) °,
J J A J
= 9
el arFy, +cla R
570 TN T
[ L * - L]
P=1I, -F(F 2 e
._-;
1*
e s T T et T e T s T




where

Lexe = Ei‘k[

1 .
({i fk) ch(si-t:k) ]
+ antr C;:V; + anlnlchl.

The sign >i‘k denotes the sum over those i’s which belong to subgroup k.

In this case, the quantities to be stored are

. 1o, 100
(4.6.2.6) Y'.F, = (y, £ 'C+, 'TD AV,

and
(4.6.2.1) F'F =vIAad Yty vy pla
080 T P T x Xk
+ A'D-lz+k_t:k' -1 + -lsz' +kD-1A
+ 1f £! 1 1v
o Crcfa s o Vi

Lo = dexl % -
Therefore, y . and Yk'Y , k=1.2.....GF are sufficient in order to

estimate the factor score weight.

75

Also, all the expressions in the following sections which contain the term

L
N V must be corrected in the similar manner as (4.6.2.5) as well as I‘F*'

Quasi Marginalization with respect to the Factor Loadings
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inversion formula 1 in the Appendix. (See Technical Notes section below.) As

noted before in the example of the EM algorithm, the MLE by the EM algorithm

*
does not produce negative estimates of the error variances since the V

matrix is positive semi definite.

* . s
Also, since F always appears as Y'F and F 'F it is not
necessary to store all the factor score estimates., That is,

. -1 *
(4.6.2.2) Y'F =Y'YD " AV,

and
* . -1 -1 .
(4.6,2.3) F'F =V A'D " YYD AV,

.
are to be stored in the calculation. With those quantities, RSS,6 in

J

(4.6.3.1) can be reexpressed as

(4.6.2.4) BSS. = [Y'Y], ~2[Y'F' 1. 'a +a '[F 'F ]
et i ij 3 2

In this sense the mean corrected sum of squares and cross product matrix Y'Y is
sufficient for the estimation. ( It is pot sufficient for the estimation of

]
L',

the factor score, but sufficient for the scoring weight W = D
¥hen the locally exchangeable prior is used for the factor scores
(4.6.2.1) should be replaced by

(4.6.2.5) E( A, D, 0 s, Y)

= Lo * trl AD A }kﬁ[ anv: 1)
+IF°+LA+LD+LII+°°Mt”

where

Lpe = Dosl Lige 1+

_____________
.............
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. b1 -1, . *
(4.6.1.5) F, = (1 £ 'C +Y,D A)V .

VWhen some of the elements of D are zero the calculation of F. should be

performed using Lawley's trick in the Appendix.

Conditional Expectation of Minus Twice the Log Posterior Density
From (4.6.1.2) and (4.3.2) we have

(4.6.2.1) EF(A.n.nl.s.y)stf(FlA.n.n. S, Y)dF

N
= Ji=1l Lyp;e

+lpe 1+ N tzA'D AV
+ N tx C;.IV. + N 1n|CF| + LA + LD + l.ﬂ + const,

where

. '-1( it
Lypge = ( 2,7AE; 0D " CgmAf, ),

and
- ‘o' -11“
Leie = £,'Gp &40
=Lepe * N tefA'D IAV'] + Lpe + L, + Ly + Ly + const,
where

Lpape = t7( Y - FA)D Y (Y-FA ),

N - .
Lpe = )l Lpe 1+ N te @V + N 1alcpl
Note that if we minimize this expectation with respect to A and D with

uniform prior of A and D, we have the same estimate as given in Rubin and

Thayer (1982). This can be shown by using Lawley’s trick and the matrix

......................................................
LR Y

.................
---------
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(4600 ¢ 1z A D ES : N(f,V),
and these conditional distributions are independent for i=1,2,...,N.
The joint donsity, which is the product of the normal density given above
is denoted by f( F [ A, D, H, S, Y ).
Ve also write

(4.6.1.3) F =YW,

-1 . ®
wheze W =D "AV,

When the locally exchangeable prior is used for the factor scores,

(4.,6.1.2) and (4.6.1.3) should be replaced by
6.1.4) £ =V, (AD Yy + 2
(‘. ode ) _i—vk( D !i %bfk )l

if the observation i belongs to the kthgtoup.
where
. -1 -1 -1
= ’
A\ ( A'D A+cm:) .
. »
Collectively, we also denote those gi's in (4.6.1.4) as F ., If the

observations are arranged such that the first Bpy observations belong to the

group 1, the second B, observations belong to the group 2, and so on, we

write
Y=[y/’, Y2" cees YGF' 1’
and
F'[F " Fz'l oo e Fw' ]"
»
The same partition should be used for F so that we may write .
-
-1
1
E
N
1
R
~ 9
-
............ et T e Tt e e, LI .'-\4- Vet e T Sl - .'.'.'.4',-.'-'.‘.‘.‘.'.'.".‘.'-'."".":‘.-'.. .t ate -"‘1
RN WA RN PRy it LK. S A S A T L A A T A A A YV S S A RS
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as well as the estimation procedure for the conditional mode of a subset of the
psrameters. Unless noted, the use of a globally exchangeable prior

distribution for both the factor scores and the factor loadings is assumed.

Conditional Distribution of F Given A, D, H, S, and ¥

By collecting l.Fi and LAFi from (4.2.14) and (4.3.4), respectively,

and using the projection operator trick 2 and the sum of squares trick in the

Appendix, we have

(4.6.1.1) L + L,

= 7, "By HE L) AD AL )
s g0+ i,

= (Y e )

+ the term not containing £,

where
P=1 - p Ao )l
g_: - (A'D-IA)-IA'D.lzi. w
]
Y - -y - Y
v s(A'DlA+CF1)1. <3
f_’j
and :.
. o -1 ::.]
<Y

Thexefore, we have

.'.'.'-i -7,
« P
[

)
sadesd

N
Tk
3

P
Py
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EAW

where the factor scores, the error variances and the factor
loadings are integrated out in respective order in the E-step.
ApEar

whore the factor scores and the factor loadings are integrated
out in respective order in the E-step and the error variances

are integrated out anslytically after the E-step,

AnBea

where the factor loadings and the factor scores are integrated
out in respective order in the E-step and the error variances

are integrated out anslytically after the E-step,

Apa®r

where the factor scores are integrated out in the B-step
and the factor loadings and the error variances are integrated

out analytically in respective order after the E-step.

Point Estimation

In this section the E-step is first described. First, the derivation of

EMF' BADF' ADBAF' and ADAEF' where the factor scores are first

marginalized, is presented. Ths derivation of EII?A and EHBFA’ where the

factor loadings are first marginalized, follows. Then, the description of the

M-step, where the mode of the hyperparameters are to be estimated, is presented

_________________________
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.
integrate P2 analytically demoting the result by f ( B ls, Y).

Also, denote its log by APZEPI( Bls Y).

The M-step

Maximize AP?.EPI( B | S, Y) with respect to H,
For the next jteration, P2 should be replaced by the mode or the mean of

£°(2,0(s,7).

Since this variation is different from the one proposed before the
sgreement of the results should also support the convergence of those quasi
marginalization schemes.

In the application to factor analysis, we partition the parameter P into
three subsets, namely,

P=[F, A D],

Therefore, we bave many ways to perform the quasi marginalizatiom by changing
the order of integration and the way the parameters are integrated out ( by
analytical method or taking expectation.) In the following section, only six
of them are to be considered. Each of these variations are designated by the

partioular form which is to be maximized in the M-step. Namely,

Eoar

where ths factor scores, the factor loadings and the error

variances are integrated out in respective order in the E-step,

Eoea

where the factor loadings, the factor scores and the error

variances are integrated out in respective order in the E-step,

.......
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the expectation. When the E-step is applied in the next iteration, the first _3.
part of By, should be regarded as the complete log likelibood. That is, N
Ry
when calculating the conditional distribution of P1 given F2, H, S and Y, the '::
4

L ]
values of the function of P2 should be used in place of P2,

Y

]

The two expectations, and , are different since ths
1 P1

.
inclusion of P2 in P1 is neglected in the latter. Also, note

F‘mz = Bth but F‘PZPI < BPIP‘Z' where EPIPZ denotes the same quasi

marginalization scheme with P2 integrated out first. That is, the conditional
expectation is affected by the order of integration., Although we cammot prove
the convergence of this process to the desired marginal mode, to see that the

two different methods, namely, the maximization of EPZPI and the maximization
of EPIPZ' result in the same solutior should support the convergence. If .

they do converge to the same solution we may as well conclude that the desired
marginal mode of H is obtained by this variation of the originsl EHM algorithm,

The quasi marginalization using the EM algorithm was originally suggested

by Tom Leonard (personal commmnication) in the following form.
The E-step

Identify the conditional distribution of P1 given P2, H, S and Y Bt

.
and denote the parameter by P1 = ni( P2, H, S, Y ),
Evaluate the conditional expectation of log complete likelihood =

with respect to P1 and denote the result by EPI( P2, H] S, Y).

Consider Em(m,nls, Y) as the log likelihood of the posterior

PP Uiy SR W g I )

A TR 0 2 4
SaTeT

.
joint density £ (P2,HIS, Y) with P1 integrated out and
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= Expectation with respect to P1 of Expectation with respect to P2 | P1.

Bowever, when the second expectation is taken, it may be the case that it is
.
difficult to do so with P1 treated as a function of P2, but that it is

.
tractable with P1 regarded as constant, If this were the case, we propose
the following as a variation of the original EM algorithm.

The E-step

Identify the conditional distribution of P1 given P2, H, Sand Y

.
snd denote the paramster by P1 = h1( P2, B, S, Y ).
Evaluate the conditional expectation of the log complete data 1likelihood

with respect to P1 and denote the result by F?l( P,BI|s, ¥Y).
Consider EPI(PZ.BIS. Y) as the log likelihood of the posterior
.
joint density £ (P2,HIS, Y) with P1 integrated out and
identify the conditional distribution of P2 given H, S and Y and
s
denote the parameter by P2 =h2 (H,S,Y).
Evaluate the conditional expectation of EPI( R,BE|S Y)
.
with respect to P2 given S and Y treating P1 in the eoxpression as
constant and denote the result by EPZPI( gBls, Y).

The M-step

Maximize Bmm( H1 S, Y) with respect to H.
It is often the case that Epzm consists of two parts, namely, the part
which corresponds to the original complete log likelihood with P1 and P2

. . .
replaced by functions of P1 and P2 , snd the additional term due to taking
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f((PlER)=f(PIm)eCP2]|m).

Vhen the posterior marginal mode of
s(HlS, Y)=/f(P,HIS Y)aPp

=[fgp,HlS Y)dPr1 ar2,

are to be estimated we may proceed as follows,

The E-step.
: Identify the conditional distribution of P1 given P2, H, S and Y
.
= and denote the paramster by P1 = hi( P2, H, S, Y ).

Identify the conditional distribution of P2 given H, S and Y and

.
denote the parameter by P2 = h2( H, S, Y ).
- Evaluate the conditional expectation of the log complete dats likelihood
with respect to P1 given P2, H, S and Y and denote the result by

E,( P2, B Is, Y).
Evaluate the conditional expectatiom of E  ( F2, H |s, Y)
L ]
with respect to P2 given H, S and Y noticing that P1 in the
expression is a function of P2 and denote the result by Ehll( BlsS Y).
The M-step

Maximize Bth( B ]S, Y) with respect to H

.
treating P2 as constant.

This is an authentic application of the EN algorithm in which the expectation

- is taken successively, i.e.,

* Expectation with respect to P1 and P2 :Q::

LR
L

= Bxpectation with respect to P2 of Expectation with respect to P1 | P2 -

Al

Pt
. &
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Y

[
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is that they cannot be negative. This can be shown by moticing that RSS’s are

slways non negative and V. is positive semi definite. Therefore, the
solution by the EM algorithm may be different from the one by the direct
maximization method such as the one employed in SAS (SAS User’'s Guide:
Statistics, 1982 Edition.) How the algorithm behaves in the neighbourhood of
zero is not known,

Also, as many Bayeslan statisticians acknowledge, the distributional

assumption on [ a, b ] may be thought of as the prior distribution of those

effect parameters. ( Box (1980), Lindley (1971) Box and Tiao (1973), and
Lindley and Smith (1972).) If we accept their view, then, what we have done
may be regarded as Parametric Empirical Bayes estimation of the

hyperparameters, where the hyperparameters, m, s,, and g are estimated on
the basis of data y. ( See Morris (1983). ) Also, from the hierarchical Bayes

point of view, the solution can be regarded as the marginal posterior mode of

the hyperparameters when the hyperparameters, m and C, have uniform second

stage prior distributions,

Quasi Marginalization by Some Variations of the EM Algorithm
Consider the hierarchical model stated in the previous section, that is,

f((P,BlY,S)=f(YIP)S(PIH) f(HI|S),

and suppose the partition of the form

p=(P, R2], B=(H, W],

e o
ST
PP T SO )

.
te oW
P
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h +p In(s,) + q In(sy) + (5.1;)'(5.-!!!}_)/ 5,

s 0B L sg YR ) s,

h }ipq(v )/sB+const.

The M-step

p By differentiating Eﬂ("”A'sB’sElx) with respect to m, 8y

1 g and g and solving the resulting normal equations, we have,

+ N P b
)i=l( By) /p

( RSSy, + trX'XV. ) / pq,

= ( RSS +>ipl(v )Y/ p,

( RSSy + }“(v )) /g,

where .
. .
RSSw=(x-xg (y-%8 ),

I,((l -m)2 )

RSS, = Etzl

A

prq
RSS §,,p+1‘ b2 ).

w

The suocessive application of these two steps will result in the marginal

MLE of s,

. - +
E 'A' g and m, with § integrated out, namely, ’E'

+ 4 +
Spe 8¢ and m , at the convergence point.

One interesting characteristic of those MLE's of the component variances
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L1J F.
nssj = (z(j)- [

. . &

J

-\
Lye = 25l Lyje 1+ p 1alc,d,

where

¢ 1,0
th. = (5j 8)'C, (gj-g)

+ teC 1"
t AQj.

¥When the locally exchangeable prior is used for the factor loadings

. .
91 and !j should be replaced by

. * & -1 s -1
(4.6.3.5) Q, = ( (1/4 )F 'F +C _+(N/d,)v ) ~,
J Jj Ak J
and
* a2l (ra Ry, +CCla)
579 3T A TR
if variable j belongs to the kth locally exchangeable group.
The conditional expectations should be

(4.6.3.6) Eg( A, D, H |'S, Y) = same as (4.6.3.4)

with LAF replaced by

AN
Ly = 2j=1[ Lyje 1-

where
- . =1,
LAj‘ = 5j-!k) CAk(gj-gk)

+tr €2’ + mlc,. |
Ak j T P Al

if variable j belongs to the kth group.

’

¥V FELEL




Next we consider the analytic marginalization.

(4.6.3.7) AE(D, H1S, Y)=-21a(f £(A, D HIS Y)dA

s &
=3P [ &t F 'Fald,
J=1" =j =3

* Y5 Py'Y

. o
3, Qj LY 1

+p _._'C;15 +p 1n|CA| + I‘F‘ + LD + LH + const..

Now, when CXI —> zero, this expression reduces to

(4.6.3.8) AAEF( p,H, IS, Y)

= P P .,
Zgll(zml?(s F) lF %)

* ¥y Py MY

- a‘ 'Q‘.-laf ]
=i g =i

=« Inlpl + Lo, + Ly + Ly + comst,

—1 e

< \P . _ 2%
PIASACAYLEE AU

-~ r 1alDl + LF. + LD + const.

Since, when C;l = zero, we have

U . s -1
(4.6.3.9) Qj =dj( F'F +NV )7,

*
=

J

QS (W F 'y, )
LT iT Uy

.......

............................
................




Y'
»
v 'g s,

:v.' t"' a
PR ..

¢ @ ¢ -] @
=(F'F +NV ) F'z(j)n

(a ' (FE NV ) /a
2 257 7%

*eNat'v'a /d
T IME T

L - . & @
- . -...j'F OF!

=
E Therefore,

S (4.6.3.10) e Jd.-a'Q ta°
t 63100 ¥4y T(5H/%578 Y 4
9 = vy 1d. - 220 L4t

F L L)% 7 %% 4
_ . o]

vy

’ - 2 "F.'
= 0L ~ 2 8°F 'y

va )/
52 %

¢ & s
+ a3 'F'Fa, +Na
-j —J -

J

. »
(NV)a )/ 4.

( Rss“ +
s i j

J

Finally, we have, when C;l —) zero,

(4.6.3.11) A,E( D, H l's, ¥)

=)P[ (RSS. +a '(NVDa ) /4, ]
j=1 j = = J

J J
+L‘_.‘ - r InlD| + LD + l.ﬂ + const.

.............................................
....................
..................
................

...............
-----
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Comparing (4.6.3.4) to (4.6.3,11) we potice that in the former expression
the additional term due to taking the expectation is added to the summational
term snd that in the later the multiplicative factor to 1anlD| is reduced by r.

In either case this corresponds to the adjustment for the degrees of freedom of

.......
...............
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the error variance. See (4.6.9.1) and (4.6.9.2) in the later section. That
is, in both cases, the estimate of D will be expanded.

It should also be noted that this method of quasi marginalization does mot
work when exchangeable prior is used for the factor loadings with nonzero

-1
A °

Quasi Marginalization with respect to the Error Variacnes

Consider, again, that minus twice the log posterior density of D and H is
*
given by E,(D,BIS,T) or AAEF(D.Hls.Y) and denote it by £ (D,HIS,Y).
(The quasi marginalization of EFA(D,HIS,Y) given in the next section is also

considered here.) Here, again, we may either take the expectation or integrate
D out analytically. We first consider taking the expectation.

Write minus twice the log density as
.
(4.6.4.1) -2 1a £ (D,HIS,Y)

}p[(u +S)/dj + (N+n+2) lndj]

- p( n 1n{s/2) - 2 1n Gamma(n/2) )
gt Lty
where

% * & s #» * S8
u, = RSS, +tr(F 'F NV )Q,+Na_ 'V a,,
J J i =3 i

if EAF or EFA in the later section is used,

e ¢ o8
u, =RSS, + Na,'Va,,
j J S S |

ST T e .
.......

L

.......

-~ g

------
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if AAEF is used.

Therefore, the conditional distribution of d, given H, S, and Y is

J

(4.6.42) d 1 H S, ¥ 2N, ugts )

.
where N =N, if EAF or EFA is used, and

.
N =N-1, if AAEF is used.

Since those distributions are independent for j=1,2,...,p, the joint density is

given by the product of the inverted chi square distributions given, We denote

the density by £ ¢ plu,s, 7).
The conditional expectation is given by
(4.6.4.3) EDAF(HIS.Y) or EDAAEF(HIS.Y)
] L ]
=-2 f 1a £ (D,HIS,Y) £ (DIH,S,Y) dD
- P L J L J ]
§j=1[ (uJ + s)/dj + (N +n+2) v ]

- p( n In(s/2) - 2 1n Gamma(n/2) )

+LF. +LA. +Lﬂ + const,

where

L J
d =

VE( 1/d, ) = (u,+s)/(N +n),
J - J J

and

.
v, =E(1lnd. )
J = J

= In( (u+8)/2 ) - pay( (N m)/2 )

where psy(x) is the digamma function, i.e., psy(x) = d lnGamma(x) / dx,

AN
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{Johnson and Kotz (1969)].

The term LA‘ should be subtracted from (4.6.4.3) if AABF is used.
Next, consider the analytic integration of D. The integration of

L J

f (D,HIS,Y) with respect to D is straight forward. The result is

(4.6.4.4) £(HlS,Y) = &

g

nlz/((u +‘))(N"m)/z

(s/2) ; Gazma ((N +2)/2)/Camma(2/2) 1.

However, instead of straight integration we may approximate the result by

using the log normal approximation used in Leonard (1985). That is, the form
.
of £ (D,HIS,Y) suggests that

[ ]
(4.6.4.5 u |4, (N, 40,

and

d, : X_z( n, s),
J

where 12( n, s ) denote the chi square distribution with
the degrees of freedom n and the mean ns.
By approximating these distributions by the log normal distributions,

Bartlett and Kendall (1946), we have,

L ] L]
(4.6.4.6) 1n v i dj : N( In dj +InN, 2/N ),

and

in dj : N( 1n(s/n) + 2/n ).

Therefore, marginally,

(4.6.4.7) 1n uj : N( 1a(s/n) + in N. . 2/N. +2/n).

L T A R R T S P L L T A e T .- - .
AR A AR A R e R T M) b I T AP PR PN AT LI AR e e e e e e e e e T
PR .~."‘(":}r-';.". AT NI -'_.-‘:t.'t\'-'.‘.n ....... B T T AL R -
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Finally, the result is,

(4.6.4.8) ADEAF(HIS.Y) or ADAEF(HIS.Y)

}j’ [ ( lata)- ~(la(s/n)+1aN) )2 1 7 ( 2/N'42/n )

+Log +Lg (+L,, ) + const.

When the quasi marginalization of the error variance by taking the
expectation is performed prior to the qussi marginalization with respect to the

factor loadings we have a similar formula for EAD , namely,

(4.6.4.9) E, o (HIS,Y) = same as F.M,(nls Y)
ith RSS.— + Na 'Voa
e ST T &

where Rss;' is defined in (4.6.3.4),

and for the calculation of all the terms d; should be used.

Given EDAF(HIS N, B (gls,Y), AE,p (4]8,Y), or ADAEF(HIS Y,

we consider those as minus twice the log posterior density of the
hyperparameters and the mode of those distributions are to be estimated in the
subsequent M-step. However, we first consider the case where the factor

loadings are first marginalized.

Conditional Distribution of A Given F, D, H, S, and Y

In this section the derivation of EDFA and ADEFA' where the factor

loadings are first marginalized by the EM algorithm will be presented.

By collecting LAj and lPAj from (4.3.5) and (4.2.16), respectively,
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and using the same tricks as before, we have

(4.6.5.1) LFAj + LA =

3
(8.-2)'Q L(a,-a') + const
87857 7y ey T oconst
where
. S R
Qj = ( (lldj)F F + CA ) o,

* - (1/d,)r
575 Pl (¢

This indicates that given F, D, H, S, and Y,

-1
+CA_a_ ).

3

Since these are independent for j=1,2,...,p, the joint density is the product

(4.6.5.2) a, |F. D, H, S, Y : N(a,Q ).
=J r - k]
of these densities and we denote it by f(A|F,D,H,S,Y).

When the locally exchangeable prior distribution is used for the factor

loadings, similar correction as (4.6.3.5) is necessary. That is, replace all

the CA's and a’s by cAk and L if the variable j belongs to the kth

group.

Conditional Expectation of Minus Twice the Log Posterior Denmsity
We have

(4.6.6.1) EA(F.D.H|S.Y) = [ L £(AlF,D,H,8,Y) d A

= YL CRSS) +er FURQL )/ dp 4Ly, )

J 3 I Aj*

+p 1n|CA| + LF + LD + l.n + const.,

where

L] ( —F‘ '( -F L ]
RSS; = (g¢5)Fay) ' (gey)Fey).

J J

-




* -1, -1
LAj' = (51—5) C, (gj-g)-rtrCA Qj.

We write

(4.6.6.2) L, 2,1 Lye 1 + 2 1alc)).

When the locally exchangeable prior is used similar correction as

(4.6.3.6) is necessary.

Quasi Marginalization with respect to the Factor Scores

Now consider EA(F.D.Hls.Y) as minus twice the log of the posterior

.
density of F,D,H and denote it by f (F,D,HIS,Y). Then, by writing
observation wise, we have

(4.6.7.1) EA(F.D.Hls.Y)
© N * S DN
= iyl (2,A£)'D Mg AE,)
+£.7°(c v aurd. e, ]
£,70C +vard.0f,
P [‘D +Lﬂ + const.,
where
P
}j [ a /4 1.
Again, using the same tricks, we have
L ] [ ]
(4.6.7.2) £, IpAH,S,Y :N(f,V )
- r ~i
where
Ve (a* oW s asa. + C;l )73,

and

hirhaid e dr s g Y grit s Wl oy
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Those conditonal distributions are independent for i=1,2,...,N, the joint

.
density is given by the product of those and we denote it by f (Fip,n,s,Y).
Also, we write,

* -1 *  ®
(4.6.7.3) F =YD A V.,

When the locally exchangeable prior is used for the factor scores a
similar correction as (4.6.1.4) is necessary.

The conditional expectation of E,(F,D,HIS,Y) is =
L
(4.6.7.4) EFA(D.EIS.Y) = [ EA(F,D,HIS.Y) £ (Fip,H,8,Y) dF
N s, -1 e
DM Y AL R YN
.t /d. + -1 .. ® ]
£rera, + 6ot
+N tr(A"n'1A°+o./d.+c;1)v' o
+1.F.+LA.+LD+Lﬂ+const.
L 1]

= 2 P (RSS . +te(F F+NV)Q -
=1 j j

FNaVa )4, ]
857 85 1%

+ Ly + Ly, + Ly + Ly + const, not including D, -

RSS, = (y, \-F a})'(y, . \-F )
where 4 () s.) Y 8y

3
and

N, _°, -1,
Loe = Dyl £,"(0./8.4Cg ) ]

+ N tr c;,lv'
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+ N lnlcpl.

When the locally exchangeable prior is used for the factor scores a

similar correction as (4.6.2.5) is necessary. That is, replace all the
. .

occurrences of N times V by Ek?;[npkvkl and modify Lpe to

include gk.

It should be noted that the final expression in (4.6.7.4), though it is

the same as the one in (4.6.3.4), is a different one since the definition of

. .
F and A in them are different. With this difference in mind, we can
perform the same quasi marginalization with respect to the error variance as

before.

Estimation of the Hyperparameters: the M-step

Here, tho minimization of minus twice the conditional expectation of the
posterior density of H given S and Y is considered. The expectations are given
in (4.6.4.3), (4.6.4.8) and (4.6.4.9). It is now necessary to specify the form
of £(H|S), When some information is available we may use the conjugate form
suggested in Lindley and Smith (1972) or Lindley (1971). When there are little
information we can use uniform prior distribution for H. Although the use of
uniform prior distribution in the case where many parameters are to be
estimated is subject to criticism, we can argue that it does not hurt the
estimation since the number of random variables which bave uniform prior
distribution is greatly reduced, Lindley (1975). Since the informative

specification of the prior distribution of the hyperparameters is usually
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difficult, throughout this section uniform prior is used for the
hyperparameters.

First, we minimize with respect to the hyperparamters of the factor

loadings, HA’ Since the term which includes HA is the same for all the

cases, we have

+= P
4.6.8.0 2" =)P 04

1/ p,
and
-+ | * p ]
= ’
= (A + )P 1) /0y,
where T =1 - (1/p)11 ‘.
P “P°P
When the globally exchangeable prior is used for the factor scores with
£=0 and CF=Ir' those mode are not unique in the sense that an orthogonal
rotation of A by an orthonormal matrix, say, T, results in a differeat mode T's

and T'CAT, which also gives the minimum of those expectations. Therefore,

the off diagonal elements of CA should be set equal to zero.

For the hyperparameters of the error varinaces, HD’ when the expectation

method is used, we have the following derivatives,

(4.6.8.2)

9E/dn = 2121[ v.i

1 - p( 1n(s/2) - psy(n/2) ),

o/0s = )21 174 1 - pols,

azﬁlanz = (1/2) p psy’( n/2 ),

azn/ana. = - pls,

................

I

LS
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aZE/asz = pn/sz.

t

»

where psy’(x) is the trigarma function, Johnson and Kotz (1967).

¥y 8

A
A
~
.i
L
~
N

With these derivatives we can solve for n+ and s+ by the Newton—Raphson
mothod, Since there are only two parameters involved the process does not

require much iterations.

When the log normal approximation is used the solution becomes much more

simple. That is,

(4.6.8.3) a" = 1/ W22 100 u w0 1pIN )

C | ]
Exp( Zizl[uj]/p -1nN 1xn'

where u, = }jzl[ 1n uj 1/ p.

When the locally exchangeable prior for the factor loadings is used

(4.6.8.1) should be replaced by
4.6.8.4) o' = ). (a)/
(4.6.8, )ik.‘}j‘kﬁj By
snd

* » .

Ca = A JkAk+§j‘k[Qj], Ak
. .

where the same partition as F before is assumed for A and .Tk is the
LTV Y centering operator, When a priori zeros are specified for some

of the elements of a,'s those must be set equal to zero in (4.6.8.4). This

k

does not affect the estimation of CAk's since this type of the restrictions

of the location psrameters can be handled independently of the scale

parameteres, Mardia, et.al. (1979).

........... s
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S sl e el g " |




B ‘."“4'.V..7‘\"..'. P Sl S A e g B

91
When the locally exchangeable prior for the factor scores are used we have

to estimate the hyperparameters. Differentiation of LF‘ with correction in
(4.6.2.5) gives
(4.6.8.5) £ BT,
4- . . ) -k }i‘k[_f_i] anD
and

+ F.' Ft/ . .

% Bt e

where J’k is the Oey X 0pp centering operator.
To enforce the orthogonality of the model at least one of the ch

matrices should be set equal to Ir' Also, to avoid the rotational

indeterminacy, one of the CAk’s should be constrained to a diagonal matrix.

Marginal Mode of the Error Variances Given the Hyperparameters

Conditioned on the hyperparameters, the marginal mode of the error
variances can be calculated by a variation of the EM algorithm. That is,
depending on the method of quasi marginalization of the factor scores and the
factor lradings, the mode of the error variances is given as follows, When
EAF or EFA is used, from (4.6.3.4) and (4.6.7.4) we seo the marginal moue
of the error variance is given by
(4.6.9.1) d; =Cu;+8) /[ (N+n+2), §=L2...p

where

'v‘ *
2

RSS, +tr(F 'F 4N V )Q +a,
% (e 37

St -
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andRSSj.F,V.A.ande are defined,

in the corresponding E-step formulae, namely,
either, in (4.6.3.4), (4.6.1.1), and (4.6.3.2) or in (4.6.7.4),

(4.6.7.2), and (4.6.5.1) depending on the choice of EAF or EFA'

respectively, When the locally exchangeable proir is used correspoinding
corrections should be made.

Yhen AABF is used the estimate becomes, from (4.6.3.11),

(4.6.9.2) d;' =(u +s) /(Nen~-c+2), j<L.2..00
" L
j L ]

NV
2

.
where u, = RSS, + a

3 J

.
As noted before, the lack of the term including Qj's. which comes

from taking the expectation with respect to the factor loadings, is compensated

by reducing the demominator in (4.6.9.2),

_ Marginal Mode of the Factor Scores Given the Error Variances
Conditioned on the error variances and the hyperparameters marginal mode
of the factor scores can be calculated by the EM algorithm where the factor
loadings are treated as the m-issing data. The result is given in (4.6.5.1),
(4.6.6.1), (4.6.7.2), and (4.6.7.3). Here, the first two formulae are

considered to be the E-step, and the last two, the M-stop. ( Due to the
.
symmetry of the conditional density, F is not only the mean but also the

L J
mode.) It should be noted that this formuls is not linear in terms of F
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. . .
since V include Qj's which, in turn include F , When the locally

exchangeable prior distributions are used corresponding corrections should be

made.

Marginal Mode of the Factor Loadings Given the Error Variances
Conditioned on the error variances and the hyperparameters marginal mode
of the factor loadings can be calculated by the FM algorithm where the factor
scores are treated as the missing data. The result is given in (4.6.1.1-3),
(4.6.2.1), and (4.6.3.2), Here, the first four formulae are considered to be

the E-step, and the last one, the M-step. ( Due to the symmetry of the

.
conditional density, A is not only the mean but also the mode.) When the
locally exchangeable prior distributions are used corresponding corrections

should be made.

Joint Mode of the Factor Scores and the Factor Loadings
Given the Error Variances
Conditional on the error variances and the hyperparameters, the joinmt mode
of the factor scores and the factor loadings can be given by s straight forward
minimization since there is nothing left for marginalization, Sucocessive

application of
4.6.12.1) FF =yplav',

where V' = ( A'D A + Cp )1,

DO

-

-

PR AR TR A At AL AR ain Bl WSl s

f::VI

I,
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and

+ + ’ ~1
(4.6.12.2) 8 = Qj( (lldJ)F () +Cs ),

where Q} = ( (lldJ)F'F + C;l -1.

)
gives the joint mode. Note that mo extra term due to taking the expectation is
involved., When locally exchangeable prior distributions are used corresponding

corrections should be made.

Summary of the Algorithms

A summary of the six methods propsed in the previous sections for the
estimation of the modal value of the hyperparameters is found in Table 1, The
necessary formnlae are listed for each step, namely, the B-step and the quasi
marginalization and the M-step. The two steps sre iterated until the process

converges.

Technical Notes

Unless specified otherwise the following initial configuration is used.
Initial Factor Loadings
(4.6.14.1) Principal Component Solution based on (1/N)Y'Y matrix,
Initial Error Variances
(4.6.14.2) diagl (1/N)Y'Y - A'A ], where A is the initial factor loadings.
Initial Factor Scores

1
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When no & priori zeros are specified it may be efficient to orthogonally rotate
the initial configuration given above so that

(4.6.14.4) A'J’pA = djagonal

is satisfied and enforce the restriction

(4.6.14.5) cAk = diagonal

in the M-step. When the hyperparameters have uniform prior distributions this
restriction eliminates the rotational indeterminacy. When there are a priori
zeros, the following orthogonal rotation to the target matrix B should be
performed on the initial configuration given in (4.6.14.1),

(‘I‘ll‘.‘) B = [ bje ]' j = 1. 2. LN p' . = 1. 2. L N r.

where bje = 0 if j belongs to k and be ” 0,

= missing,

where 'ke' k=1,2, ..., GA' e=1,2, ..., r, denotes

the locational hyperparameter of the factor loadings.

The iteration process should be terminated when certain convergence
oriterions is satisfied. For the programs where the calculation is done with
double precision numbers the criterion

Successive sbsolute difference of n is less tham or equal to .001,

and

Successive absolute difference of dj' j=1,2,...p, is less than

or equal to .00001,
is used, Since the degrees of freedom, n, has a value comparable to the number
of observations, the convergence criterion for n should be adjusted according

to the number of observations. Also, the convergence criterion for the error
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variances should be adjusted according to the observed variance of each
variable.

When performing the B(FA or ADFFA method with a uniform prior

distribution of the hyperparsmeters the conditional expectation of F tends to
shrink toward zero. This is due to the unboundedness of the marginmal

likelihood of F and D in (4.4.1). Therefore, some normalization such as

L)
(4.6.147) F'F =N1I,

* L]
and corresponding rescaling of V , CF' A,a, and CA is necessary.

Also, due to the umboundedness of (4.4.3) with uniform prior on s, algorithms

such as BAFD or EFAD are impossible. The essential difference between

those two cases is that in the latter case, where D is marginslized first, the

conditional expectation of lld.i or dj is a function of RSS.i only and can

easily become zero.

When no a priori zeros are specified we may be able to rotate the solution
to & simple structure. This is possible because we have uniform prior
distributions for the hyperparameters. It should be noted, however, that the
rotation must be performed not only on the parameter matrices but aiso on the
hyperparameters. That is, denoting the rotated matrices by #, the result of

the rotation defined in (2.1,14) is

4.6.14.8) ¥ =F T,

A# = A (T')~15

et x-12, 6,
%

-1
'l' CAkT) . k 1. 20 seey GA.

RPN TN W
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_f_ﬁ = T'gk. k=1, 2, ..., GFA

and % -T'CFKT' k=1, 2, ..., GF'

*
It should be noted that the conditionsl dispersion matrices such as V

*
and Q.i may be interpreted as the lower bound of the posterior marginal

dispersion matrices of gi or a., respectively, in the sense that the real

jl
marginal dispersion matrices are larger than the conditional dispersion
matrices. That is, if some of the conditional dispersion matrices are very

large it indicates that the factor analytic model with the given dimensionality

does not fit the data,
. o
Also, the matrix (1/N)F 'F is the sample dispersion matrix of the

factor scores calculated from the estimate F.. Therefore, specification
errors with respect to the number of dimensions may be checked by the diagonal
elements of this matrix., That is, if some of the sample variances are small,
it indicates that we might have specified too many factors. In this case the
analysis should be performed with a smaller number of factors,

When some of the error variances are zero use
(4.6.14.9) V' = ¢ - A’ (DHACA") ™ ACE,
-1..9 -1
W=D AV -(ACFA’+D) ACF.

Q =d (F'F +NV +ac1)?
J 3 J A ’

F.’F. » -1 -1
and a = AV 4, C0)

. 1
x (F z(j)ﬂlc a).

jA




e e T

98
The sbove expressions given above, which can be derived by using matrix

inversion tricks and Lawley’s trick, reduce to the expressions given by Rubin

and Thayer (1982), namely, (2.2.26) through (2.2.28), when C;l is zero.
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CHAPTER V
EVALUATION OF THE METHOD

Convergence

In order to check for convergence, the solutions using the following nine
methods were compared.
1. M.L.E. by SAS
2. Marginal Estimate of the Eror Variances

i.e., E‘FA without marginalization with respect to D

3. Marginal Estimate of the Eror Variances,

i.e., EAF without marginalization with respect to D.
4. Ap\Bp
5' %Em

6. Apra
1. Epap
8. e,

9. EM'F

The three data matrices, namely, sixteen psychological tests from
Harman (1976, ppl23-124), ten artificial variables from Francis (1983),
(see Seber(1984)), and five mathematics tests from Mardis, et., al. (1979) are

anslyzed with r = 4, 2, and 1, respoctively. The first matrix is a correlation

......................
..........
..............
..................
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matrix and the rost are dispersion matrices. The eclements of the last matrix

are divided by 1000 in order to keep the numbers in & reasonable range. For -

the factor loadings, in order to make the comparison possible, CA1 —D

zero is used.
For methods 2 and 3, the convergence c¢riterion is such that the

moan sbsolute difference of dj (= 00001,

and for the last six methods, the criterion for convergence require the

absolute difference of n+ (= ,001,
The results are shown in Figures 1-3, where the mean and the variance of

the estimated dj's are also shown. We can conclude from these Figures that

six variations of the EM algorithm are almost similar. Therefore, the quasi
marginalization may be regarded as a very good approximation to the real
marginalization.

Since EDAF is easy to modify for the calculation of MLE and the marginal

estimate of the error varinaces in the later analysis only EDAF is used.

Robustness to Initial Configuration

In order to evaluate the robustness or the sensitivity to the initial
conf iguration the correlation matrix in Table 2(e) was analyzed with a

variation of the EDAF method with several different initial configurations,.

The data matrix is calculated by Davis (1944) and used by Martin and McDonald

(1975) and found to result in a Heywood case with zero error varinace for the

- '.."_‘-"‘. Cata T et et el
LA I I Ve Ve
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first variable.

The variables are:

1. Knowledge of word meanings

2. Ability to select the appropriate meaning for a word or phrase in the
light of its particular contextual setting

3, Ability to follow the organization of a passage and to identify
antecedents and references in it,

4, Ability to select the main thought of a passage

5. Ability to answer questions that are specifically answered in
a passage

6. Ability to answer questions that are answered in a passage but not in
the words in which the question is asked

7. Ability to draw inferences from a passage about its content

8. Ability to recognize the literary devices used in a passage and to
determine its tonme and mood

9. Ability to determine & writer'’s purpose, intent, and point of view,
i.e., to draw inference about a writer

A special version of the EDAF program was developed which uses a uniform

factor loadings prior, a globally exchangeable factor score prior, and a

globally exchangeable error variance prior., The degrees of freedom and the

scale parameter of the inverted chi square distributions are calculated with f

the BDAF program using the same prior distributions as stated above for the

factor scores and the factor loadings. Since the main interest here is to see
the effect of the globally exchangeable prior distribution of the error :;i

variances on the analysis of a Heywood prone data matrix and the comparison -~

-’ T s e e et Y T
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between the Bayesian solutions and the MLE, the marginalizations of the factor
loadings and the error varisnces are not performed, That is, the program
calculates the posterior joint mode of the factor loadings and the error
variances with the prior distributions specified above. The only difference
between this special program and the method proposed by Rubin and Thayer (1982)
is that the former uses the inverted chi square prior distributions as the
prior distribution of the error variances, It is assumed that the algorithm
has converged when the mean partial derivative of (4.4.2) with respect to D is
less than or equal to .00001,

Eleven different initial configurations of the factor loadings and the
error variances are calculated as follows, ( The initial configuration for the
factor scores is calculated, given A and D, by (4.6.14.3).)

1, HR

Result of EDAF with globally exchangeable factor score prior distribution

and uniform factor loading and error variance prior distributions

without marginalization of the factor loadings and the error variances.

This is the MLE by the EM algorithm proposed by Rubin and Thayer (1982).
2. BIM

Result of EDAF with globally exchangeable factor score prior distribution

uniform factor loading end error variance prior distributions

without marginalization of the factor loadings and the error variances.
Instead of (4.6.14.2) its mean is used as the initial estimate of all

the error variances.

This is also the MLE by the EM algorithm with a different initial estimate,

3. HR

RN . . P - LT et . AT e T et e -
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Result of EDAF with globally exchangeable faotor score and error

variance prior distributions and uniform factor loadimg prior distribution.
The hyperparameters n and s are estimated here.

4. BEM

Result of EDAF with globally exchanger.ole factor score and error

variance prior distributions and uniform factor loading prior distribution.
Instead of (4.6.14.2) its mean is used as the initial of all
the error variances.
Although the hyperparameters are estimated here they are not used
in the later analysis,
5. BMR

Result of with globally exchangeable factor score prior distribution
AR

and uniform factor loading and error variance prior distributions
without marginalization of the error variances,
This is the marginal MLE of the err. .riances.

6 .-

Result of ET)AF with globally exchangeable factor score prior distribution

and uniform factor loading and error variance prior distributions
without marginalization of the error variances.
Instead of (4.6.14.2) its mean is used as the initial of all the
the error variances.
This is also the marginal MLE of the error variances.

7, SSMC

MLE by SAS PROC FACTOR with PRIOR SMC option.

e e e e e T

T T A T R C S
- s e . 2. e e - et “w g™ ¥ AR A O
R S AP NP S L S P N A R h




q'v\"?' L Al St v Som aaw ary el aaee dun e Pacdinyt e Jamh it B aican iy P g gt

[ af/9X ] = a(:r[af/avlc'Y)/ax.
Proof
affex__ = ). .( af/ay, . dy, ./
/ *pa >x.j( £ Yij yij/ *pq )
=¢tr [ 3£/3Y ) [ aY/ax_ ),
Pq
= 3(trl 3£/0Y 1 'Y)/0x ,
c Pq
Y = . .
where [ /prq 1 =1 ayij/aqu ], axb. |}
When evaluating [ 9f/9Y ]c treat Y as if all of its elements

are distinct even if Y is symmetric.
As a special case of b=l and d=1 we have

of/ax = [ af/ay 1' [ ay/ex 1,
where [ 9y/3x 1 = ( ayi/axj 1, i=1,2,...,a, §j=1,2,...,c, a x C,

Also, when Y = x I, we have

[ 3f/3x ] = tr( atr[BflaY]c/Bx 1.

For some specific forms of f we have
dtrAX/9X = A', if X is distinct,

= A+A’'-diag(A), if X is symmetric.

AtrX'AX/3X = (A+A’)X, if X is distinct,
= (A+A')X+X(A+A’')-diagl(A+A’)X], if X is symmetric,
AtrXAX'/3X = X(A+A’), if X is distinct,

X(A+A')+(A+A’ ) X~-diag((A+A’)X], if X is symmetric.

atrX'AXB/9X = AXB+A'XB’, if X is distinct,

117

= AXB+BXA+A'XB'+B'XA'-diag(AXB)-diag(BXA), if X is symmetric.

ax lazax = (X"l xYyr, if X is distinct,
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[ag/aY ) = [ aflayij 1, i=1,2,...,a, j=1,2,...,b, a 1 b,

and, the derivative of f with respect to X,

[ 9£/3X ) = [ aflaxi 1, i=1,2,...,¢, j=1,2,...,d, ¢ x d.

J

Therefore, the derivative with respect to Y’ is
{ a£/0Y' 1 = [ 9£/3Y 1’, b x a,
Also, when Y is diagonal,
[ 3£/3Y ) = diagl 8£/9Y ].
Using the following properties of trace we have two usefull rules for

differentiation,
trlV = teVU = trV'U’ = tzU'V’, and trUV = Ei j( uijvji ).

1. Product Rule
Let U and V be functions of X. Then,

atrUv/oxX = OtrUVEIOX + atrUcV/aX.

where subscript ¢ denotes that the matrix with ¢ is to be held

constant for the purpose of differentiation.

Proof
attUV/aqu = a)i.j( nijvji )/aqu
= ) (auij/aqu vji) + } (uij avji/aqu)
- a}(n“(vij)c)/aqu + a}((uu)cv”/aqu
= 3trUV /3x  + d3trU V/ax . ||
¢ pq ¢ pq
2. Chain Rule

Let Y be a function of X, Then,




et
2 a”a"
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= K Ei.j(cijyij) )
= }i‘j( o; B0y ) )

= trCE(Y)

= trCE(xx’)
*
= trC( V +E(x)E(x)’ )
¢ o0
=trC( V+xx ')
L ]
= tsCV + trCx x'

s & s
=trCV +x 'Cx. |l

Partial Differentiation of Some Functions of Matrices

Following rules and formulae are collected from Schoenemann (1965),
Rao (1973), Press (1982), and Nel (1980).

Definition:

Let £ = f(Y),

where f is a matrix to scalar function,

Y=1( yij ]0 i=1,2,...,8, j=1.2.....b. axb,

X={ x, ], i=1,2,...,¢, j=1,2,...,4, c x d,

i

yij = sﬁj( X),

where ‘U' i=1,2,,..,a, j=1,2,...,b, is a matrix to scalar fumctionm.

Then, the derivative of f with respect to Y is defined as

________
.......
..........
............
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...........

DA

115

.........
..........
.........




= D’IA(A'D"IA)'I(c;1+A'n'1A)-n'1A

- o“A(A'u'IA)'lc;l.

Therefore,

o facan et « oA i
alacan ) = 0 a7

0 A(I+CA'D 1A) = DA,

o7la = p A 7,

- n“A(c;l»«A'n“lA)"c;l. 1

Expectation of Quadratic Form

L4 LJ
Let E(x) = x and D(x) = V.

L J L4 .
Then E( x'Cx ) = x 'Cx + trCV .

Proof

x°Cz = trCxx’

= 21.1( TRE

where Y = xx°.

Therefore,

E(x'Cx) = E( trCY )

N R e S o T T SO PSR
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Let A, B, and C be, respectively, p x p, P x q, and q x p. Then,

3.|A+m|=|A-1||Ip+A'1m|

=1 A1) 1q+c.«'ln|.

Lawley’s Trick

aW=pa (c;1+A'D'1A)'1 C;I.

wh.reQ=ACFA'+D.

Proof
By the Matrix Inversion Formula 1 we have

a1 - plpIy c;.l sap )y [,

Moltiply A(A'D°1A)'1(c;1+A'n'1A) from the right. Then,
left = n"A(An‘lA)'l(c;1+A'n°1A)
- ol a7l
- s acan G
- s lacan el
e1ght = D AGD 0 M)

-o"A(c;1+Am".«)"m‘hu'n‘lm'l(c;‘+A'n"A)

113
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Sum of Squares Completion Trick
let x, a, and bbepx 1, and A and B be p x p symmetrix.
Then,
q = (x-a) ‘A(z-a) + (x-b)'B(z-d)
= (x-d)'D(z-d) + ¢,
where,
D=A+B,
-1
d=0"a ),
and
c = a'Aa +b'Bb - d'Dd.
Proof
q = x'(A+B)x-2x'(Aa+Bb)+a 'Aa+b'Bd
= (x-(A+B) " (Aa+Bb)) * (A+B) (x-(A+B) " (Aa+BD))
—(As+Bb) (A+B) L(Aa+Bb)+a’As+b'Bb. ||
Matrix Inversion and Determinant Trick
Let A and B be square. Then,
1.(a+uv) et o a e sl m
- - - - - - h
2. (A+B) T ant (a4l ]
R
e

.
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But,

Y -xB=3x8 - xB=x(5-8),

and

v’ (v*-xB) = Y'PX(B™~B) = zero,

since PX = zero. ||

Projection Operator Trick 2

letZbenxp, V, nxr, B, rxp,and A, pxp.

Then,

Q=(z-vB) Al (z-v)

-1/2

-1/ 2P A

= Z'A z+(B-8 )y valv(s-38"),

where,
P=1 - A Y2y (palyym ya V2,

and

B = (valv)valz

Proof

Apply the trick 1 to the transformed variables

Yy =aVY2 a4 x=aV% )

..........
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APPENDIX

Projection Operator Trick 1

let Ybenxp, X, nxr, and B, r x p.
Then,

Q=(Y-XB)'(Y-XB)

«YPY+(B-B ) XX(B-8),

where
P=1 -X (X'%)” X,
B = (x'07xY,

and

A isa generalized inverse of A.

Proof
Let Y = X B = X(X'X)°X'Y,

and U =Y-Y =Py,

Then,

Q= ( Y-Y'+'-xB )'( Y-Y'+7"-xB ) )
= (vt +Y-xB) (U - Y-xB)

=0t ot iy-xe) + (-t 4+ (Y-xB) (Y-xm). 7
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the later stage. As we oxpect, the modal values are slightly larger than the
3 expected values. Next, we observe more shrinkage toward the mean in the

marginal estimate. This can be checked by the sample varirpoos of each set of
the parameters. This is also expected since the further we marginalize the
smaller the conditional dispersion matrix becomes. For the factor scores
compare V's in (4.6.12.1) and (4.6.7.3) and for the factor loadings, Q's in
(4.6.12,2) and (4.6.3.2).

As far as this data set is concermed, it can be said that the choice of a

particular set of the estimates is purely subjective.

Conclusions

It is found that six wethods to marginalize parameters behave very
similarly. Therefore, the use of the simplest and the most natural method,

namely, the EDAF method, is recommended. It is also found that the metbhod is

robust to the choice of initial estimates. Finally, use of locally
exchangeable prior distribution for the factor loadings is highly recosmended
when there are some grouping information of the varianbles prior to the

analysis,




108

3. Flags

4. Genersl Informatiom

5. Paragraph Comprehension

6. Sentence Completion

7. Word Classification

8. Vord Neaning

9. Addition

10, Code

11, Counting Dots

12, Straight-Curved Capitals

13. Word Recoganition

14. Number Recognition

15. Object—Nuamber

16. Number-Figure

Since it is known that the variables form four clusters, [Shiba (1979)], the
following four locally exchangeable groups with a priori zeros are used,
Group 1, Variables 1, 2, and 3, with zeros in dimensions 2, 3, and 4.
Group 2, Variablos 4, 5, 6, 7, and 8, with zeros in dimensions 1, 3, and 4.
Group 3. Variables 9, 10, 11, and 12, with zeros in dimensions 1, 2, and 4.
Group 4. Variables 13, 14, 15, and 16, with zeros in dimensions 1, 2, and 3,

With this prior specification the data set was analyzed with the BDAF

method and the results of each stage are shown in Tables 6(a) through 6(h),
We first notice that the difference between the first stage and the second
stage is not large. Therefore, it may be reasonable to skip the second stage

and use the conditional expectation of (reciprocal of) the error variance in
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The eostimated hyperparameters are shown in Table 5(g).

Choice of LCstimates

As noted before, the choice of the estimates depends on the investigator’s
interest. If we are interested in both the factor scores snd the factor
loadings, the joint mode sould be used. However, if we are interested in one
of them the marginal mode should be used. Also, in each stage of the
estimation procedure, that is,

Stage 1. Marginal Mode of the Hyperparameters
Stage 2. Marginal Mode of the Error Variances Conditional on
the Hyperparameters
Stage 3. Joint Mode of the Factor Scores and the Factor Loadings
Conditional on the Error Variances and the llyperparameters
Stage 4. Marginal Mode of the Factor Loadings
Conditional on the Error Variances and the Hyperparameters
Stage 5. Marginal Mode of the Factor Scores
Conditional on the Error Variances and the Hyperparameters
all tbhe parameter values are available, if not as the mode, as the conditiomal
expectation. Therefore, it may be reasonsble not to perform all the analysis
if those parameter values are similar,

In order to check this aspect of the procedure the correlation matrix in

Table 2(a) was analyzed. The variables used are:
1, Visual Perception

2. Paper Form Board
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9. Mechanical Comprehension
10, Electronics Information

The data were analyzed by the ADEAF method with three different prior

distributions of factor loadings, namely, the locally exchangeable prior with a
priori zeros in the hyperparameters, the looally exchangeable prior with the
sams groupings but without a priori zeros, and the globally exchangeable prior.

The grouping of the variables and the locations of the a priori zeros are
Group 1: Variables 1,3 and 4, zeros in Dimensions 2,3, and 4.

-’.f‘ Group 2: Variables 7,9, and 10, zeros in Dimensions 1,3, and 4.

Group 3: Variables 2 and 8, zeros in Dimensions 1,2, and 4.

.;‘.‘-‘ Group 4: Variables 5 and 6, zeros in Dimensions 1,2, and 3.

These grouping and a priori zeros are suggested by the analysis by Ree, et.al.
(1981). Tbe globally exchangeable prior distribution of the error variance ia
used and the hyperparameters, n and s, are estimated first, Then, conditiomed
on those values and the final value of D, the marginal mode of the factor
loadings are calculated. The marginal mode of D is not used since, at least
with this data, it is very similar to the final value of D,

f:‘. The results are shown in Tables 5(a) through 5(d) with an additional
solution from SAS PROC FACIUR MLE with PRIOR SMC option, Table 5(e), and the

oblique solution in Ree, et.al. (1981), Table 5(f). The results in Tadbles

5(b) through 5(e) are rotated by the VARIMAX method. By comparing Table S(a)
and 5(b) it is obvious that just by specifying a priori grouping and zeros in

the hyperparameters we can attsin simple structure. Iromically, in this case,

the VARIMAX solution seems to be worse than the unrotated solution, The rest

of the Table 5 also shows the same pattern of simple structure.

.........................
.......................
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It can be concluded that the method is very robu * to the different
initial configurations. Also this finding strongly demonstrates the

superiority of the Bayesian factor analysis proposed in the Chapter IV over the

usual MLE., Five different MLE's found by SAS PROC FACTOR are reduced to two
different Bayesian solutions just by assuming an informative prior distribution
of the error variances. Intuitively, it can be said that the prior
distribution has the effect of deemphasizing local minima, A similar result i

may be expected from the use of the prior distributions of the factor loadings.

o e
F A

Effect of the Locally Exchangeable Prior Distributions .1

~

of the Factor Loadings '_{;

In order to demonstrate the effect of the locally exchangeable prior -

distributions of the factor loadings the correlation matrix of ASVAB Form 8a in

Table 2(e) is analyzed. The data were collected by Ree, Mullins, Mathews, and

Massey (1981) with 2620 subjects and consists of scores om the following ten

tests.

RN ) |

1. General Science

v

2. Arithmetic Reasoning —
3. Word Knowledge
4. Paragraph Comprehension g
5. Numerical Operations (speeded)
6. Coding Speed (speeded) N
7. Auto—Shop Information

8. Mathematics Knowledge "
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8. SBLR
MLE by SAS PROC FACTOR with PRIOR uniquenesses given by the result .
of HLR,

9. SX#2
MLE by SAS PROC FACITOR with the following PRIOR uniquenesses
.5 .001 .5 .5.5.5.5.5.5

10. Sx#7
MLE by SAS PROC FACTOR with the following PRIOR uniquenesses
.5.5.5.5.5.5.001.5.5

11, SX#9
MLE by SAS PROC FACTOR with the following PRIOR uniquenesses
5.5.5.5.5.5.5.5.001

The SAS results with the PRIOR uniquenesses given by the results of BLM,
BHR, BHM, BMR, and BMM are the samo as SSMC., The initial configurations are
shown in Table 3,

Each initial configuration above was submitted to the special program to
check the robustness. The values n = 15,0139 and s = 5,48453 were used for all
the calculations, As shown in Fig. 4 and Tables 4(a) through 4(d), the
program resulted in only two different solutions. The first group, where
variable 4 has low error variance, consists of BKBLR, BXBHR, BKBHM, and BXSER,
where BK is attached to indicate the results of the special program, The
second group, where variable 4 has high error variance, consists of EKHLN,
BKBMR, BKBMM, BXSSMC, BKSBIM, BKSBHR, BKSDIIM,BKSBMR, BKSBMM, BKSX#2, BXSX#7 and
BKSX#9. The solutions within each group are identical to each other to six

digits.
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- -2 X'-IAX-1 - dm(x"u'l). if X and A are symmetric.

oY asax = -a:r[(r’1Ax’1)°Yl/ax.

a1nlXl/ax = (X1)!, if X is distinct,
-1 -1
= 2X “-~diag(X 7), if X is symmetrio.

a1alYl/ax = atrl Y:1Y 1/0X.

The Guttman/Kestelman Formula

Let the following factor analytic model hold.

¥ = Af + Dz,
where y is px 1, fisrx1, zispzx]l,

Aispxr, and D is p x p diagonal,

E(f) = E(z) = 0,
D(f) = Ir’ D(z) = Ip,
Cov(f,z) = zero.
These imply
E(z) = 0, and D(y) = AA’ + D =, say, 0.
Note that the error variances are denoted by Dz.

Kestelman(1952) and Guttman{1955) showed that, given A and D,

the model is not unique in the sence that the variables

. -1
f =A'Q7y+Ps,

---------
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.............
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and

. - -
z =m12-DlAP£.

where
’ P |
PP’ =1 - A'Q A,
4
and s is any varisble which satisfies
E(s) = 0, D(s) = Ip. and Cov( y,s ) = zero,

also satisfy the wodel requirement stated above.

Proof
] ¢ L 3

Y =Af +Dz
= A(A'Q g+ps) + D(Da™ gD TAPy)
- M’O-lx + APs + Dzﬂ-lx - APE
= (M'*Dz)ﬂ-lx
- x.
. -1

E(f ) = A'Q E(y) + PE(s)

=0,

. -1 -1
E(z ) = DO E(y) + D APE(s)

'(_).

. -1, -1 ,
D(f)=A'Q 00 A+PIP

= A0 IA+ I -an A

CLOVLUEL R
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1

- ] - - - -
pzh) =peta oo+ plAP T PA'D

« 0o 3 + D IAG-A' At

o220 % sanr-anra laaypt
« p~ 1?0 0% +ar'~(a-DP)a taa )™}

-1 0% 1p?+ans-anr+p%a taa)p

o 1(n2a 1p?+p%a Lia-0?))p?

p~! (p2a 1p?+0?-p2a pHp

p Yg-anp?

= I.

. . -1 -1 -1
Cov(f ,z ) = Cov(A’Q "y,DR “y-D "APs)

-aataglp-~ppan?

- arg - (-avg tan?

Laod

= a0 p-p 14"
= a0 0 g taap Yy oot

Ara pt-140" 1) 0t

A @ Y p2eaa)-1) Dt

1

"
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Table 1 Summary of the Algoritim

Prior Distributions of F and A
Globally Exchangeable Locally Exchangeable

4.6.1.1 4.6.1.4
4.6.2.2 4.6.2.6
4.6.2.3 4.6.2.7
4.6.3.2 4.6.3.5
4.6.3.2 4.6.3.5
4.6.4.3
4,6.8.1 4.6.8.4
4.6.8.1 4.6.8.4
fixed 4.6.8.5
fized 4.6.8.5

4.6.8.2 with u and N in 4.6.4.1 and 4.6.4.2

4.6.5.1 4.6.3.5°
4.6.5.1 4.6.3.5°
4.6.7.2 4.6.2.5"
4.6.2.2 4.6.2.6
4.6.2.3 4.6.2.7
4.6.4.3

4.6.8.1 4.6.8.4
4.6.8.1 4.6.8.4
fixed 4.6.8.5
fixed 4.6.8.5

4.6.8.2 with u and N in 4.6.4.1 and 4.6.4.2

‘s’ after the fomula number indicates analogous correction.
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Table 1 (continued)

Prior Distzibutions of F and A
Globally Exchangeable Locally Exchangeable

4.6.1,1 4.6.1.4
4,6.2.2 4.6.2.6
4.6.2.3 4.6.2.7
4.6.4.9
4.6.3.2 4.6.3.5
4,6.3.2 4.6.3.5
4.6.8.1 4.6.8.4
4,6.8.1 4.6.8.4
fixed 4.6.8.5
fixed 4.6.8.5

4.6.8.2 with u and N’ in 4.6.4.9 and 4.6.4.2

4.6.1.1 4.6.1.4
4.6.2.2 4.6.2.6
4.6.2.3 4,6.2.7
4.6.3.2 4.6.3.5
4.6.3.2 4.,6.3.5
4.6.8.1

4.6.8.1

4.6.8.3 with u and N in 4.6.4.1 and 4.6.4.2

For the next iteration use

3

........

d, = ( “j +8)/ (N+n+2),
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Table 1 (continued)

Prior Distributions of F and A
Globally Exchangeable Locally Exchangeable

ABea

The E-step

| ] *
A 4.6.5.1 4.6.3.5
L ®
Q 4.6.5.1 4.6.3.5
[ ] L
v 4.6.7.2 4.6.2.5
vF 4.6.2.2 4.6.2.6
al 4.6.2.3 4.6.2.7
The M-step
. 4.6.8.1 4.6.8.4
c, 4.6.8.1 4.6.8.4
£ fized 4.6.8.5
G fixed 4.6.8.5
L]
n 4.6.8.3 with u and N in 4.6.4.1 and 4.6.4.2

For the next iteration use
d =(u +s8)/ (N+n+2),

J J

ApaBr
The E-step

v 4.6.1.1 4.6.3.4
Y'F 4.6.2.2 4.6.2.6
FF 4.6.2.3 4.6.2.1
A* 4.6.3.9

Q 4.6.3.9

The M-step

£ fixed 4.6.8.5
CF fixed 4.6.8.5
n 4.6.8.3 with u and N‘ in 4.6.4.1 and 4.6.4.2

For the next iteration use

d =(u, +s)/(N+np-r+2),
J J

..................................... e e
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1.000
.403 1,000
.468 .305 1
321 247
.335  .268
304 .223
332 3832
.326 .184
116  .075
.308 .091
314 140
.489 321
1.000

128 AT
.195 1.000
.238  .065
139 370 1
176 177
194 341
.368 .211
.323 .201
10.934

8.104 10.709

10.468 8,623

8.541 10,155
11,998 10.494
-0.047 0.025
2.385 2,765
-0.626 -0.166
-0.168 1,990
-1,749 ~1,139

(c)

.3023

.1258 .1709
.1004 .0842
.1051 .0936

Table 2 Dats Matrices

e

(a) Correlation Matrix from Harman (1976)

.000

.227 1.000
327 .622
.335  .656
391 .578
325 723
099 311
110 344
.160 ,215
327 344
.066 ,280
127,229
.000

.187 .208
.345 1,000
.251  ,263
334  ,448

1,000
.722
527
.714
.203
.353
.095
.309

.292
.251
.273

.167
1.000

1.000
.619
.685
246
.232
.181
.345

.236
.172
.228

.159

1,000
532
.285
.300
271
.393

+252
.175
.255

.250

1,000
.170
.280
.113
.280
L 260
.248
274

.208

1.000
.4“
.585
.408
172
.154
.289

317

(b) Dispersion Matrix from Francis (1983),

14,528

9.629 14,846
12.625 11,063 19,832
0.901 1.892 -0.092 15.804
3.480 3.880 2,915 12.921 17.580
0.867 1.466 0,684 15,001 15.426 24.436
1.433 3.292 0.323 13.498 15.365 16.602 21.326
-0.453 1.873 -2,958 12.491 13.367 15,814 15.385 22.136

Dispersion Matrix from Mardia, et.al, (1979),

1116
.1108 .2179

.1161 ,0979 .1205 .1538 .2944

All the entries are divided by 1000.

N = 145

1.000
428 1
.535
.350
«240
.362

.350

N =50

N = 100

129

.000
.512

131
.173
.278

.349




LA SREC AR Pt 4 WLV LWLV TP - TN T WYL v v vy
. . Il P A AU P it it S a an :

130

Table 2 (continued)

(d) Correlation Matrix of ASVAP Forw 8a.

1.00 N = 2620
.71 1,00
.83 .70 1,00
.74 .70 .82 1,00
.48 .59 .52 .55 1.00
43 .52 .48 .49 .64 1.00
.70 .60 .68 .63 .40 .42 1.00
.65 .79 .62 .60 .58 .51 .52 1.00
J1 .69 .67 64 45 .45 .75 .64 1.00
.78 .68 .76 .69 .46 .46 .79 .61 .75 1.00

(e) Correlation Matrix from Davis (1944),

1.00 N = 421
.72 1.00
41 .34 1.00
.28 .36 .16 1.00
.52 .53 .34 ,301.00
J1 .71 .43 .36 .64 1.00
.68 .68 .42 .35 .55 .76 1.00
.51 .52 .28 .29 .45 .57 .59 1.00
.68 .68 .41 .36 .55 .76 .68 .58 1,00




BLR

0.812843

0.477504
0.453904
0.676648
0.896015
0.842199
0.660842
0.841190

W00~ WN

BM

0.855872
0.810301
0.476637
0.405390
0.672354
0.893300
0.834940
0.654167
0.833737

OO~ bW

BHR

0.810807
0.813890
0.476344
0.439384
0.674253
0.889749
0.838562
0.659494
0.837584

O W~V W

0.816658 —0,014656

Table 3 Analysis of Davis’ Data: Initial Factor Loadings and Error Variances

Error Varince

0.331688
0,338511
0.767954
0.246798
0.546000
0.200804
0.295139
0.566964
0.297765

Error Varince

0.073185
0.339893
0.772769
0.814058
0.531306
0.186432
0.296642
0.559281
0.298954

Error Varince

0.330455
0.339987
0.755056
0.422007
0.541602
0.212918
0.299621
0.560605
0.301959
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Table 6 (continued)

(b) Factor loadings and Factor Scoring Weights
Values at the End of Marginal Estimation of Error Variance.

Factor Loadings
1 2 3 4

0.584022 -0,337871 0.044703 0.088162
0.541687 -0.254189 -0.023022 0.048515
0.536513 -0.324311 -0,032304 0,060920
0.005327 -0.712261 0.005046 ~0.000537
-0.024393 —0.734924 -0.021617 0.002592
-0.018424 -0.730419 -0.016213 0.001663
0.085915 -0.651269 0,075602 ~0.008608
-0.049310 -0,.753803 -0,043608 0.005107
0.000102 -0.190575 0.598915 0.132620
10 0.060305 -0,291032 0.599291 0.170080
11 0,158430 -0.185615 0.561312 0.043399
12 0.395364 -0.321665 0.524598 0.007841
13 -0.012577 -0.220312 0,118324 0.51189%4
14 0.010144 -0.169255 0.105527 0.508116
15 0,061011 -0,227214 0.177197 0.504992
16 0.206767 -0.183465 0.260190 0.488820

O 00~ AW & W=

Sample Mean and Dispersion of Factor Loadings
1 2 3 4

0.158805 ~-0.393011 0.183371 0.160349

1 0,047588 0.017093 -0.003962 —0,009201

2 0.017093 0,050459 0.029291 0.028556

3 -0.003962 0,029291 0.056644 0.004383
4 -0.009201 0.028556 0,.004383 0.041575

LI S Wl Y Tl DO NI . 2
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Table 6 {(continued)

(a) (continued)

Factor Scoring Weight
1 2 3 4

1 0,394413 -0,030042 -0,079415 0,017196
2 0.281880 -0.013292 -0.077284 0.001809
3 0.300054 -0,029260 -0,093438 0.009034
4 -0.068900 -0,220555 -0,044782 -0.049292
5 -0,101037 -0.249806 -0,067369 -0.042865
6 —0.098456 —-0,254434 -0.065290 —0,046505
7 -0.000655 -0,150542 0,001760 -0,059018
8 ~0,133333 -0,280495 -0.089655 ~0.037181
9 -0.090953 -0,007862 0,321248 ~-0.005793
10 ~0,060997 -0.026252 0.312716 0.016743
11 0.028308 -0.000603 0,294939 -0.078495
12 0,225164 ~0.021997 0.293564 -0.143138
13 -0.050183 -0,016455 ~-0.021071 0.291471
14 -0,035100 -0,006594 -0,027347 0.303153
15 ~-0,018764 -0,012775 -0.000553 0.315139
16 0,064876 0,009493 0,031664 0.288458

Sample Digpersion of Factor Scores

1 2 3 4

0.655222 -0.073111 0.088669 0.023238
-0.073111 1.085088 -0.083745 -0,105452
0.088669 -0.083745 0.777002 0,089481
0.023238 -0,105452 0,089481 0,597317

1
2
3
4

PEPT N SN

QQ;J

:;;4




Table 6 Analysis of Harman'’s Data

(a) Factor Loadings and Factor Scoring Weights
Values at the End of Estimation of Hyperparameters.

Factor Loadings

1

0.583695
0.541807
0.536692
0.005473
-0.023985
~0,018178
0.085502
~0.048773
0.001400
10 0.061218
11 0.158644
12 0.394458
13 -0.011712
14 0.010753
15 0,061607
16 0,206248

C RSN ND W=

2 3 4

-0,.337757 0.044130 0,087959
-0.254016 -0.022888 0,048518
-0.324043 -0.032077 0.060933
-0.712123 0.005168 -0.000551
-0.734585 ~0.021257 0.002549
-0,730202 ~0.015998 0.001643
-0.651552 0.075240 -0.008566
-0.753366 ~0.043133 0.005051
-0.190838 0.598659 0.132125
-0.291066 0.599099 0.169649
-0.185795 0.561296 0.043424
-0.321751 0,524847 0.008443
-0.220081 0,118846 0.511821
-0.169247 0,105990 0,508071
-0.227154 0,177626 0.504945
-0.183886 0,260088 0.488898

Sample Mean and Dispersion of Factor Loadings

1

0.159053
1 0.0474s53
2 0.017109

3 -0.003968
4 -0.009156

.............

2 3 4
-0.392966 0,183477 0.160307

0.017109 -0,003968 -0.009156
0.050408 0.029247 0.028539
0.029247 0.056595 0.004396
0.028539 0.,004396 0.041564

...................

........................

.......
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Table $ (continued)

(g) (continued)

Group 4: Variables 5 and 6.

!4 = [ 'ol ooo .on 665442 ]p

Cas

1 2 3 4
1 0.091414 -0,056729 -0.089281 -0.002489
2 -0.056729 0.038457 0.034028 -0,001978

3 -0.089281 0.054028 0.087783 0.003923
4 -0,002489 -0.001978 0.003923 0,.003883

Hyperparameters for the Error Variances

n = 16.058422 s = 3.429397
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Table $ (continued)

{(g) Hyperparameters
With Locally Exchangesble Prior with A Priori Zeros

Hyperparameters for the Factor Loadings

Group 1: Variables 1, 3 and 4.

s, =~ [ .24779, 0, .0, .01,

Ca1

1 2 3 4

0.004785 0.002168 0.002714 0.001054
0.002168 0.179911 0.113805 -0,066294
0.002714 0.113805 0.072865 -0.043123
0.001054 -0.066294 -0.043123 0.031040

oW e

Group 2: Variables 7, 9 and 10,

22 = [ .O. -0716819. .0; oo ]'

C2

1 2 3 4

1 0.172095 0.000920 ~0,102238 0.060819
2 0.000920 0,002812 -0.004285 0.000267
3 -0.102238 -0,004285 0.070773 -0.037518
4 0,.060819 0,000267 -0.,037518 0.021920

Group 3: Variables 2 and 8,

!3 = [ 000 aoo -066‘751; uo ]:

Cas

1 2 3 4

0.165055 -0.141059 0,001925 0.101284
-0.141059 0.120626 -0.001293 -0.086814
0.001928 -0,001293 0,001697 -0.000033
0

1
2
3
4 0,101284 -0.086814 ~0.000033 0.063032




Table $ {(continued)

(e) Factor Loadings ( Varimax Rotation )
MLE by SAS PROC FACTOR with SMC Option

1 2 3 4 Error Variance
1 0.52646 0,58392 0,21769 0,36209 .20338
2 0.37697 0.35478 0.38362 0.62558 .19352
3 0.42621 0.77377 0.28933 0.,24984 07349
4 0.39202 0.61580 0.36376 0.28062 .25605
5 0.15159 0.22804 0.73929 0.27133 .30485
6 0.23203 0.17051 0,70087 0.17277 39602
1 0.81020 0.29513 0.22335 0.16403 17969
8 0.29934 0.26396 0.38636 0.69531 20799
9 0.67360 0.27751 0.25067 0,38481 .25834
10 0.6°873 0.41570 0,24666 0,28149 .19890
{(f) Factor Loadings
( Oblique Rotation from Ree, eol.sl (1981))
1 2 3 4

1 54 27 .26 -~-.04

2 21 15 .59 .14

3 .70 .16 .13 .08

4 62 .12 .15 .57

S .13 08 .19 .57

6 07 20 .10 .56

7 23 68 .04 .01

8 A0 12 .62 .17

9 .13 .58 .29 .00

10 33 .56 .14 .02
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Table 5§ (continued)

(c) Factor Loadings ( Varimax Rotationm )
With Locally Exchangesbls Prior

1 2 3 4
1 0.5440 0.2128 -0,3580 -0.5906
2 0.3905 0.3750 -0.6304 -0.3650
3 0.4487 0.2879 -0.2563 -0.7573
4 0.4006 0.3459 -0.2893 ~-0.6332
5 0.1639 0.6747 -0.3099 -0.2516
6 0.2259 0.7870 -0.1666 -0.1626
7 0.8133 0.2143 -0.1720 -0.2960
8 0.3180 0.3782 -0.7160 -0.2700
9 0.6899 0.2480 -0.3850 -0.2776
10 0.7143 0.2449 -0.2797 -0.4131
(d) Factor Loadings ( Varimax Rotation )
With Globally Exchangeable Prior
1 2 3 4
1 0.5311 0.2211 -0.3624 -0.5924
2 0.3720 0.3724 -0.6205 -0.3583
3 0.4328 0.2894 -0.2534 -0.7586
4 0.3913 0.3621 -0.2788 -0.6252
5 0.1521 0.7158 -0.2794 -0.2350
6 0.2347 0.7190 -0.1691 -0.1677
7 0.8108 0.2242 -0.1670 -0.2968
8 0.3059 0.3921 -0.6988 -0.2665
9 0.6746 0.2508 -0.3850 -0.2788
10 0.6936 0.2382 -0.2799 -0.4174
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Table 5 Analysis of ASVAB Form 8A

(s) Factor Loadings ( without Rotation )
With Locally Exchangeable Prior with A Priori Zeros

1 2 3 4

0.6581 -0.5029 -0.3158 0.0948
0.4516 -0.3784 -0.6236 0.2511
0.8200 -0.3936 -0.2161 0.1678
0.6998 -0.3598 -0.2662 0.2375
0.3398 -0.1627 -0.3523 0.6040
0.2594 -0.2249 -0,2263 0.7275
0.3784 -0.7902 -0.1407 0.1401
0.3574 -0.3147 -0,7048 0.2514
0.3641 -0.6724 -0.3596 0.1529
0.4950 -0.6877 -0.2474 0.1507

(b) Factor Loadings ( Varimaz Rotation )
With Locally Exchangeable Prior with A Priori Zeros

1 2 3 4

0.5852 -0.5346 -0.3532 0.2043
0.3562 -0.3805 ~—0.6258 0.3684
0.7532 -0.4394 -0.2514 0.,2802
0.6271 -0.3936 -0.2857 0.3415
0.2457 -0.1595 -0.3040 0.6727
0.1576 -0.2175 -0.1627 0.7744
0.2928 -0.8062 -0.1682 0.2076
0.2627 -0.3073 -0.6992 0,3665
0.2728 -0.6794 -0.3793 0.2399
0.4085 -0.7083 -0.2759 0.2393
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Table 4 (continued)

L] L]
(d) Final Value of F 'F .

Solution with Low Error Varinace on Variable #4.
1 2
1 0.937479 0,005313
2 0.005313 0,60789%0
Solution with High Error Varinace on Variable #4,
1 2

.940400 -0,019373

1 0
2 -0,019373 0,364831

"

L
atal
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Table 4 (continued)

(0) Final Conditional Expectation of Factor Score Weights.

Solution with Low Error Varinace on Variable #4,
1 2

0.155969 -0.153019

0.151353 -0.027197

0.040342 -0.046109 )
0.075110 0,833996 -
0.078564 -0.006782

0.266449 -0,116043

0.177608 -0.062457

0.074163 -0.005465

0.175636 -0.041495

VO -IAKbELWNM

Solution with High Error Varinace on Variable #4.
1 2

0.185876 -0.762509
0.144439 -0.246647 .-
0.037639 0,009005 -
0.034176 0,.118204
0.083909 0,198785
0.276851 0,363198
0.170171 0.126135
0.075363 0,136785 -
0.168515 0.121119

WO ~NANEWN
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i Table 4 Analysis of Davis’ Data: Results

(a) Final Conditional Expectation of Error Varinaces

Solution with Low Error Varinace on Variable #4,

.. 0.328924 0.336681 0,749110 0.322409 0.536633 0.209846
’ 0.296318 0.555788 0.298808

Solution with High Error Varinace on Variable #4.

E 0.232446 0.316048 0,754362 0.793634 0,513588 0.198474
0.297366 0.546577 0,299606

(b) Final Conditional Expectation of Factor Loadings.

. Solution with Low Error Varinace on Variable #4.
» 1 2

0.810576 -0.117377
0.813995 -0,012322
0.476424 -0,081633
0.446113 0.691789
0.674320 -0,000144
0.890054 —0.050043
0.838720 -0,035834
0.659376 0.001189
0.837695 -0.020270

O 0 ~IAWNIWN

Solution with High Error Varinace on Variable #4.
1 2

0.823812 -0,304174
0.813901 -0,147551
0.477665 -0,003874
0.411161 0.135154
0.677542 0.140070
0.893923 0.086225
0.838166 0.033489
0.659422 0.097594
0.836848 0.031608
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1
2
3
4
5
6
7
8
9

0,443260
0.447630
0.222940
0.212910
0,393430
0.464740
0.000000
0.287690
0.507700

0.442940
0.446050
0.243240
0,192510
0.392760
0.464030
0.510450
0.307850
0.000000

Table 3 (continued)

Error Varince

0.341120
0.337230
0.773900
0.832170
0.542710
0.206240
0.000000
0.569130
0.279840

Error Varince

0.341400
0.338640
0.772730
0.889333
0.543240
0.207070
0.277040
0.568830
0.000000
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Table 3 ({(continued) __

:"' mo sm-Mn mn m; Sm. and SBMH ':

“b 1 2 Error Varince f::;
1 1.000000 0.000000 0.000000
a 2 0.720000 0.369970 0.344720
- 3 0.410000 0.242340 0.773170

4 0.280000 0.326190 0.815200 :

5 0.520000 0.443850 0.532600 Ll

6 0.710000 0.556080 0.186680 -

7 0.680000 0.491090 0.296430 -

8 0.510000 0.424890 0.559370 s

9 0.680000 0.488650 0.298820 -

SBLR -

:_', 1 2 Error Varince

1 0.280000 0.766790  0.333630 -

2 0.360000 0.728960 0.339010 -~

3 0.160000 0.453180 0.769030 -

4 1.000000 0.000000 0.000000 -

5 0.300000 0.603130 0.546230 i

6 0.360000 0.818510 0.200450 :

7 0.350000 0.763130 0.295130 h

8 0.290000 0.590430 0.567290 ~

9 0.360000 0.756610 0.297930 x

SX#2 ’

1 2 Error Varince -

1 0.720000 0.365890  0,347720 =

2 1.000000 0.000000 0.000000 N

3 0.340000 0.357170 0.756830 ;'

4 0.360000 0.195780 0.832070 -

% 5 0.530000 0.427760 0.536120 ;
- 6 0.710000 0.558710 0.183750
7 0.680000 0.491730 0.295800

-.j 8 0.520000 0.406140 0.564650 :

’ 9 0.680000 0.488240 0.299220 v




O 0~NAWU DL WHN

0.811119 -0.121935
0.813922 -0.009310
0.476510 -0,088143
0.437326 0.610792
0.674248 0.010934
0.889839 -0.040549
0.838630 -0,028670
0.659503 0,016008
0.837628 —-0.011161

W2 iWwidm

0.836022 -0.382014
0.811075 -0.103317
0.476852 ~0,012453
0.408311 0.139907
0.675165 0,123325
0.896054 0,102585
0.836854 0.049606
0.656418 0.097122
0.835626 0,047953

O oo~ NN D W

0.836910 ~0.380007
0.811316 -0,101433
0.476880 —0.011333
0.407981 0,140862
0.674874 0.124915
0.895811 0,104686
0.836735 0.051562
0.656188 0,098659
0.835511 0.049907

Table 3 (continued)

Error Varince

0.330069
0.339990
0.754991
0.435266
0.541635
0.212984
0.299661
0.560582
0.301968

Error Varince

0.155784
0,333018
0.776130
0.817584
0.531444
0.187412
0.298595
0.562332
0.300820

Error Varince

0,155%28
0.333012
0.776130
0.817585
0.531442
0.187411
0.298595
0.562332
0.300820

P p—
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Table 6§ (continued)

(b) (continued)

Factor Scoring Weight
1 2 3 4

1 0.396668 —0.030005 —C,079840 0.017604
2 0.282561 -0,013289 -0.077726 0.002023
3 0.300887 -0,029298 -0,094023 0,009303
4 —-0.069127 -0,220696 —0,044808 ~0,049597
5 -0.101663 -0,250306 ~0.067666 -0.043101
6 —0,098912 -0,254818 -0,065462 —0,046813
7 -0.000359 -0,.150332 0,002056 -0,059417
8 -0.134299 -0,281308 -0,090174 -0,037372
9 -0.092510 -0.007878 0,322904 -0,005700
10 -0.062101 -0,026296 0.313909 0,016912
11 0.028051 -0,000590 0,296059 —0.079150
12 0.226944 -0.022005 0,294864 —0.144876
13 -0.050628 -0,016448 —0,021576 0,292930
14 -0.035381 -0,006523 -0,027898 0,304816
15 -0.019035 -0,012715 -0.001049 0.316910
16 0.065508 0.009780 0.031427 0,289864

Sample Dispersion of Factor Scores
1 2 3 4

0.661182 -0.072420 0.088229 0.022859
-0,072420 1,087983 -0.083686 -0,105571
0.088229 -0.083686 0,.783112 0,088769
0

1
2
3
4 0,022859 -0,105571 0.088769 0.603667
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Table 6 (continued) -

(c) Factor Loadings and Factor Scoring Weights
Values at the End of Joint Estimation of Factor Scores and Factor Loadings.

Factor Loadings
1 2 3 4

1 0.612345 -0.599289 0.087146 0.158986
2 0.564085 -0.457232 0.010543 0.103659
3 0.558300 -0.540573 0.000103 0.118598 -
4 -0,114895 —0,803456 ~0.100861 ©0.011532 -
5 ~0.147203 -0.828065 ~0.129800 0.014875 .
6 -0.137196 —0,820510 ~0.120796 0.013547
7 -0.005696 -0,720830 ~0.004974 0.000636
8 -0.175978 -0.849867 ~0.155236 0.017726
9 -0.331131 -0,159671 0.672917 0.292350 o
10 -0,.188156 —-0,314258 0.661643 0.322302 -
11 -0,018781 -0.272320 0,616332 0.201005 .
12 0.429215 -0.554887 0.551572 0.152400 .
13 ~0.184234 -0,112750 ~0.071843 0.525962
14 -0.158000 -0,059276 ~0.083435 0.521776
15 -0.103943 -0.162369 0.016787 0.519876 -
16 0.129169 -0.209889 0.217741 0.498008 -

Sample Mean and Dispersion of Factor Loadings
1 2 3 4

0.045494 —0.466578 0.135490 0.217077 -

0.092029 -0.012986 -0.002124 -0.013083
-0.012986 0.076038 0,034554 0.049943
-0.002124 0.034554 0.088389 0.011916

1
2
3
4 -0.013083 0.049943 0.011916 0.038570

...............................

............................
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Table 6 (continued)

(¢c) (continued)

Factor Sooring Weight
1 2 3 4

1 0.321475 -0.076134 -0,011602 0.073320
2 0.221562 —-0.041760 —-0.028399 0.043020
3 0.237909 -0.056945 ~0,037947 0.051934
4 -0,101998 -0,180280 -0,062740 -0.053232
5 -0,132437 -0.200977 -0.086976 —0.050169
6 -0,129012 ~0,204547 -0,083143 -0.054189
7 -0.024690 -0,.126345 -0,002552 -0.059505
8 -0,164554 -0.223292 —0.112158 -0.047452
9 -0.190523 -0.013054 0.289455 0.047816
10 -0.123138 -0.033973 0,281129 0.066094
11 -0,032573 -0,030558 0,267324 -0.004878
12 0.229642 -0.083671 0.274954 -0.040951
13 -0.059283 0,014240 -0,105013 0.288855
14 -0,049334 0,022418 -0,113743 0.303809
15 -0,035622 0.010478 -0,082566 0.308744
16 0.061710 0.007897 0.001744 0.263956

Sample Dispersion of Factor Scores

1 2 3 4
0.526156 0.118747 0.035452 -0.005656
0.118747 0.841797 -0.030994 ~0.197943

0.035452 -0,030994 0,620489 0.091274
-0.005656 ~0.197943 0.091274 0.707033

& WN -




i ‘ Table 6 (continued)

(d) Factor Loadings and Factor Scoring Weights
Values at the End of Marginal Estimation of Factor Loadings.

_ Factor Loadings
Il 1 2 3 4

1 0.,590076 -0.561924 0,052008 0.139681
2 0.549209 -0.429081 -0.012859 0.090081
: 3 0.543649 -0.505775 -0.022812 0.103710
l: 4 -0.079764 —-0,776750 -0.069955 0,008106
5 -0.106069 -0.796811 —0.093605 0.010848
6 -0,097399 -0,790265 -0.085782 0.009661
7 0.010937 -0.708142 0.009638 ~0.000935
8 -0,129254 -0,814379 -0.114118 0.013140
9 -0.208041 -0,187953 0,647443 0.244572
10 -0.103776 —0.318461 0.641745 0.278818
11 0.013599 -0.268345 0,607520 0.180310
12 0,332875 -0.493583 0.564576 0.161941
13 -0.124651 -0,136912 -0,013462 0.520344
14 -0.101330 -0.088096 -0.024507 0.516577
15 -0,062553 -0,177377 0.056320 0.515738
16 0.116852 -0.210490 0,208957 0.498821

Sample Mean and Dispersion of Factor Loadings
1 2 3 4

0.071523 -0.454021 0,146944 0.205713

1 0.069742 -0.005311 -0.006141 ~0.010388

g -0.005311 0.064975 0.032524 0.044741

-0.006141 0,032524 0.078656 0.010502
4 -0,010388 0,044741 0.010502 0.038153
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Table 6 (continued)

(d) (continued)

Factor Scoring Weight
1 2 3 4

0.310975 -0.071712 -0.025250 0.068637
0.216437 -0.039193 -0.034988 0.040520
0.232531 -0,053251 —0.044705 0.048807
~0.079177 -0.173407 -0,043572 -0.060132
-0.103658 -0.192315 -0.062792 ~0.058892
~0.100379 -0.195927 -0.059090 -0.062856
~0.016103 -0.123747 0.004636 -0,062054
-0,129295 -0.212685 -0,082522 —-0.058155
-0.128161 -0.018218 0.282117 0.020503
-0,078863 -0.035845 0.276962 0.040581
-0.016123 -0.030623 0.266015 -0.016500
0.171872 -0.073546 0.284514 -0,033907

13 -0.038000 0.012078 -0.083439 0.276675
14 -0.028535 0.019496 -0.091102 0.290919
15 -0.018683 0.009014 -0.065872 0.299253
16 0.056413 0.007544 -0.001865 0.265621

Sample Dispersion of Factor Scores
1 2 3 4

1 0.526156 0.118767 0.035453 -0.005663
2 0.118767 0.841779 -0.030984 -0.197950
3 0.035453 -0.030984 0.620473 0,091274
4 -0.005663 -0.197950 0.091274 0,707048
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Table 6 (continued)

(e) Factor Loadings and Factor Scoring Weights
Values at the End of Marginal Estimation of Factor Scores.

Factor Loadings
1 2 3 4

1 0,612883 -0,620351 0,087765 0.163808
2 0,564815 -0.472804 0,011541 0.107391
3 0.559069 -0,557269 0.001153 0.122592
4 -0.120888 -0.808003 -0,106144 0.012138
S -0.153182 -0.832600 —0,135066 0.015476
6 -0.143460 -0.825260 -0.126312 0.014180
7 -0.012304 -0,.725842 -0.010794 0.001311
8 -0.181844 -0.854317 -0,160402 0.018312
9 -0.342213 -0.162270 0.675906 0.300225
10 -0,191989 -0.322731 0.663786 0.330311
11 -0.024473 -0.283294 0.619279 0.211781
12 0.436680 -0,.578528 0,.553292 0.164836
13 -0.194428 -0.104943 -0.083961 0.526721
14 -0.169842 -0.050546 -0.097312 0.522669
15 -0.114489 -0.158021 0.006412 0.520785
16 0.122458 -0.214506 0.215417 0.498839

Sample Mean and Dispersion of Factor Loadings
1 2 3 4

0.040425 -0.473205 0.132160 0.220711

1 0.094559 -0.015765 -0,001086 -0.013216

2 -0.015765 0.078125 0.033405 0.051106

3 -0,001086 0.033405 0.090609 0.012573
4 -0,013216 0.051106 0.012573 0.038553

.............
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Table 6 (continued)

(e) (continued)

Factor Scoring Weight
1 2 3 4

0.310729 -0.076873 ~-0.014801 0.077513
0.214367 -0.042087 -0.030034 0.045990
0.230309 -0.057105 -0.039526 0.054979
-0.101932 -0,176757 -0.062581 ~0.055287
-0.131321 -0.196949 -0.086196 -0.052904
6 -0.128394 -0.200537 -0.082699 —0,056773
7 -0.027509 —0.124206 -0,.004153 -0,059769
8 -0.162279 -0.218703 -0.110677 -0.050922
9 -0.1908285 -0.012891 0.286579 0,047963
10 -0,122128 -0.033905 0.277122 0.066889
11 -0.036273 -0.031106 0.262660 -0,000217
12 0,223221 -0.085000 0.266164 -0.030328
13 -0,056747 0.016223 -0.107366 0.286299
14 -0.047645 0,024393 -0.116936 0.301758
15 -0.034660 0.012265 -0.085416 0.306006
16 0.059241 0,008256 -0.000125 0.261205

1
2
3
4
5

Sample Dispersion of Factor Scores
1 2 3 4

1 0.502935 0.126244 0.025704 -0.003952
2 0.126244 0.813467 -0.021044 -0.192335
3 0.025704 -0,021044 0.597943 0.087372
4 -0.003952 -0,192335 0.087372 0,705390
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Table 6 (continued)

(f) Faotor Loadings and Factor Scoring Weights
Error Variances at the End of Hyperparameter Estimation.

0.463089 0.625698 0.573485 0,383050 0.355957 0.346092
0.481711 0.330248 0.491035 0.475497 0.493230 0.411494
0.644330 0.620561 0,.565170 0.562536

MEAN AND VARTANCE OF ERROR VARIANCES = 0.488949 0.009997

(g). Factor Loadings and Factor Scoring Weights
Error Variances at the End of Marginal Estimate of Error Variance.

0.435959 0.617735 0.565945 0.378151 0.351078 0.341424

0.476000 0.325488 0.483854 0.468998 0.486393 0.405130
0.635949 0.612180 0.557435 0.554944

MEAN AND VARIANCE OF ERROR VARIANCES = 0.482291 0.009758
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Table 6 (continued)

(h) Pactor Loadings and Factor Scoring Weights .
Hyperparsmeters

Hypesparameters of the Error Variances

n = 35.509313 s = 16,601690

Hyperparameters of the Factor Loadings
Group 1: Variables # 1, 2, and 3.

3, = [ .554064, .0 ,0 .0 ]

a1

1 2 3 4

1 0.000901 -0,000338 0,001448 0,000530
2 -0,000338 0.097439 0,000604 -0,021174
3 0,001448 0,000604 0,002367 0.000611
4 0,000530 —0.021174 0,000611 0.004843

Group 2: Variables # 4, 5, 6, 7 and 9,

a, = [ .0, -.716366, .0, .0]

=2

“x2

1 2 3 4

0.002903 0.002197 0.002550 -0,000292
0.002197 0.001671 0,001935 -0,000221
0.002550 0.001935 0,002258 ~0.000258
-0.000292 -0.000221 -0,000258 0,000039

& W
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Table 6 (continued)

(h) (continved)

Group 3: Variables # 9, 10, 11, and 12,

s, = [ .0, .0, 570975, .0 )
Cas

1 2 3 4
1 0.048505 ~0.044281 -0.004950 0.004370
2 -0.044281 0.066629 0.000686 -0.022250
3 -0.004950 0.000686 0.001085 0.002238
4 0.004370 ~0.022250 0.002238 0.013150

Group 4: Variables # 13, 14, 15, and 16.

" (.0, .0, .0, .503434 ]

Cas

1 2 3 4

1 0.013770 -0.012277 0.017359 -0.000967
2 -0.012277 0.043087 -0.034108 -0.000208
3 0,017359 -0.034108 0.032701 -0.000599
4 -0,000967 -0,000208 -0.000599 0,000115

..............

...............
.................

...............




o. 10 20 30 40 50 6. 70 8. 90
Error Variance
0. 1
N 1
0.726 1
0,74 1 B .
0.752 1 B
0740 1 B M M
0,728 1
0.716 1 [
0.7204 1
0,492 1 B
0,680 1 N M B B " N
5488 1 N N | B
0.458 1 N C N
0.8M4 1 C
0,632 1
0.420 1 N N N N
0.608 1 | 4 p N
0.59¢ 1 i} (] C c c c c N
0,584 1 P c
0572 1 0 P P P
0,560 I 0 0 P
A8 1 J J 0
0.5 1 J
0,524 1 J J J J J
0,512 1 6 J
0.500 1 6
0,488 1 6 6 G 6 6 6
0.476 1 6
Al ]
0.452 1 L L
0.440 I L L L L L K K
0.428 1 L K K K 1 K I 1 L
0.416 1 1 K
0,404 1 K 1
0,392 1 1 B ’
0,380 I I D b ] D
0.368 1 1 b )1} D
0,336 1 D E £ E
0.34 1 3 F F
0,332 1 H H o H H
0,320 1 E E H
0,308 I E
0,296 1 F F
284 1 H H H
0,272 1
0.260 1
0.248 1
0,236 1
0,224 I
0,212 1
0,200 I
o. 10 20 30 ‘. 50 60 7O 80 90
Fidure. 1 Various Estimates of Error Variances of the Haraan Data
145
D.F, LANBDA NEAN VARTANCE
13 M.L.E. BY SAS PROC FACTOR 0,477034 0.022715
2% MARGINAL ESTIMATE OF E-UAR BY E-AF 0,49539% 0.023301
3! MARGINAL ESTIMATE OF E-VAR BY E-FA 0.494445 0,023843
4 LOADINGS BY FORMULA» E-UAR BY LOB-NORMAL 26,826477 0.473865 0.4844629 0.013195 .
S' LOABINGS BY €-AF» ERR-VAR BY LOG-NORMAL 29,735748 0.474122 0.4844%7 0.012549
t LOADINGS BY E-FAr ERR-VAR BY LOG-NORMAL 29.842918 0.473647 0.484009 0.012542 ]
7' LOADINGS BY E-AFy ERR-UAR BY EN AFTER E-AF 30.444888 0.,463148 0.48%141 0.012720 ‘o
8! LOADINGS BY E-FAy ERR-VAR BY EM AFTER E-FA 30.610523 0.442792 0.4884639 0.012493 )

9: LOADINGS BY E~-AF» ERR-VAR BY EM AFTER E-F 28.854729 0.444513 0.471290 0,0124644
LANDDA = ¢ x n
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o. 10 20 30 40 50 60 70 80 90
Error Variance
9.000 I
8,540 I
8.480 I
8,520 I
8,360 I J J
8,200 I
8,040 I J
7.880 1
7,720 1
7,580 1
7.400 1
7.240 I M H
7,080 I
6,920 1 H
6.760 1 J
6,600 1 J J
6480 1 J J J
4,280 1
6,120 1 b D
S.960 I H H H
5.800 1 B H H
S.640 1 H
5.480 I
5.320 1 1 I
5,160 I 1 )] D D D ]
5,000 1 E I 1 b
4,840 1 I 1 1 E £ 1
4,680 I E E £
4,520 1
4,30 1 F F F F F
4,200 I F F € - L C C F
4,000 1 F c 6 6 C
3.880 I C C 6 G
3.720 1 6 B B 6
3,540 I c B B B
3.400 I G B B
3.240 1 B 6 A A
3,080 1 6 A A
2,92 I A A
2,760 1
2,600 I
2,440 1
2,280 1
2,320 1
1,960 1
1,800 1 A A
1,640 1 A
1,480 1
1,320 1
1,160 1
000 I
°0 10 20 3' 40 50 60 70 80 90
Fisure, 2 Various Estisates of Error Variances of the Francis Data
N=350 -
D.F. LMBN W mlm .:-'
1: N.L.E. BY SAS PROC FACTOR 4,375092 3.291272
2% MARGIMAL ESTIMATE OF E-VUAR RY E-AF 4,806440 3,549344
38 MARGINAL ESTIMATE OF E-UAR BY E-FA 4,802694 3.385243
¢ LOADINGS BY FORNULA, E-VAR BY LOG-NORMAL 20.144287 4,438460% 4,521993 1,203936 v
5’ LOADINGS BY E-AF, ERR-UAR BY LOG- 26,009493 4,448840 4,519325 0.977160
& LOADINGS BY E-FM ERR-UVAR BY LO6- 25.998222 4. 457544 4,518114 0.977998

7: LOADINGS BY E-#F, ERR-VAR BY EM AFTER E-AF 29,433685 4,442304 4,638591 0.923927 :::
8: LOADINGS BY E-FA» ERR-UAR BY EM AFTER E-FA 29.431026 4,440956 4,637250 0.924261 -
9: LOABINGS BY E-AF» ERR-UAR BY EN AFTER E-F 23.810238 4.187857 4,409835 0.992775 -
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o. 10 20 30 40 50 60 70 80 90
Error Variance
0,200 1
0,196 1 A A A
0.192 1 A A
0.188 I A A A A 4
0.184 I
0.180 I
0,176 1
0.172 1
0.168 1
0.164 |
0.160 1
0.15 I
0.152 1
0.148 [
0.144 | E 3 E
0.140 1
0,13 1 E E E E E E
0.132 1
0,128 1
0.124 1
0,420 1
0.416 1
0.112 1
0.108 I
0.104 1
0.100 1
0.09 1 B B B B B B
0,092 1 D D B B B
0.088 1 D D D D
0,084 1 D D D
0,080 I
0,076 1
0,072 1
0.068 I
0.064 1 .
0,080 1
0,05 I
0,052 I
0.048 |
0,044 ]
0.040 I
ey |
0.028 1 c C (o c c c
0.024 1
0,020 1 C C c
0.016 1
0,012 1
0,008 I
0,004 1
'OOM I
°0 10 20 3‘ 40 50 60 70 80 90
Fisure., 3 Various Estinates of Error Variances of the Mardias et.s 31, Data
N = 100
B.F. LAMBDA MEAN VARIANCE
12 M.L.E. BY SAS PROC FACTOR 0.104888 0.003425
2% MARGINAL ESTIMATE OF E-UAR BY E-AF 0.107946 0,003443
3. MARGINAL ESTIMATE OF E-UAR BY E-FA 0,108053 0.003517 .
A} LOADINGS IY FORMULA, E-UAR BV Los-m 3.182747 0.08487% 0.103949 0,002884 ’
S: LOABINGS BY E-AFs ERR-UAR BY LOG-NORMNAL 4,215380 0.087340 0.103481 0.,002780 -1
6' LOADINGS BY E-FA» ERR-VAR BY Los-m 4,131446 0.087010 0.103574 0.002800
7% LOADINGS DY £-AF) ERR-VAR BY EM AFTER E-AF 3,838849 0.066294 0.105307 0.002984
8! LOADINGS BY E-FAs ERR-UAR BY EM AFTER E-FA 3,743914 0,065507 0.,105242 0.002991
9: LOADINGS BY E-AF» ERR-UAR BY EM AFTER E-F 3,757377 0.064932 0.104149 0.002924
LAMBBA = s x n 4
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BAYESTAN FACTOR ANALYSIS

Shin-ichi Mayekawa
ONR Technical Report 85-3

CORRECTIONS

Correction
Replace with enclosed revised abstract.
L % ¢ L
(2.2.23) A = DQ(L + Ir)° should be (2.2.23) A = D°O(L - Ir)
= lAcFA' + D[(_%)N Exp((-%) tr 'ty
should be
l(-%)N

= |ACA" + D Exp((Hy) tr (V' Y(ACA' + 01y

given V should be given u

E to I n

change % 1 i=1

i

n2 tr W2V + const. should be n2 tr W2V + n 1n|W| + const.
the line should read:

where C = [ X', v*' [ J [x',v*']",
the mean corrected SSCP

dgj should be f(éjldj,H,S,g(j))dgj

EF(A,D,HIS,Y) should be EAF(D,HIS,Y)

%%
u, = RSS, + tr (F*'F*x + NV¥) Q, + a*'Vka*
| h| i =1 3

should be

uy = RSSF* + tr (F4'F* + NV*) O

+ Na, *'Vka%
=3 =i

3

A'A should be AA’
the (4.4) element is .07

delete Factor Loadings and Factor Scoring Weights

delete Factor Loadings and Factor Scoring Weights
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:{:' Bayesian Factor Analysis¥
o Shin-ichi Mayekawa
o
’ The University of Iowa
5?{ Abstract
el A new Bayesian procedure for factor analysis is developed in which
5 factor scores as well as factor loadings and error variances are treated
S as parameters of interest. The presentation is fully Bayesian in the
- sense that all the parameters have prior distributions and the posterior
s mode of a subset of the parameters is used as the point estimate.
e The model is a standard one where the observations are expresssed
e as the sum of the linear combination of factor scores, with factor
~ loadings being the weights, and a normal error term. As the prior distri-
_ bution the following exchangeable form is assumed:
O A factor score vector for each observation has a common normal
S distribution.
e A factor loading vector for each variable has a common normal
S distribution.
-f{ A error variance for each variable has a common inverted chi
{ square distribution.
AN When the exchangeability of all the observations/variables is in question
o observations/variables may be divided into several subsets and the
RS observations/variables within each subset may be treated as exchangeable.
152N Since the posterior marginal distribution of factor loadings and
1 error variances can be expressed as the product of the covariance~based
likelikhood and the prior distributions of factor loadings and error
S variances the proposed method includes both the random and the fixed
i} factor analysis models.
{Q: The mode of the hyperparameters is first derived from their posterior
i marginal distributions and conditional on those values the mode of error
e variance is derived from their posterior marginal distributions. Then,
) conditional of those estimates, the point estimate of factor scores
) and factor loadings are derived as the joint or the marginal mode of the
: posterior distribution of factor scores and factor loadings depending on
A the investigator's interest.

The marginalization is done via some variations of the EM algorithm
and it is found that the different variations result in almost identical
estimates. It is also found that the effect of the prior distribution of

o error variances is such that it reduces the number of local maxima.

L Finally, by specifying a priori zeros in the locational hyperparameters
o of factor loadings, a simple structure can be obtained without rotation.
o,
D :‘:‘:

9

:?: *Support for this research was provided under contract #N00014-83-
S50 C-0514 with the Personnel Training Branch of the Office of Naval Research,
AN Melvin R. Novick, Principal Investigator. I am indebted to Professor

:ﬁ: Novick and Dr. Ming-mei Wang for their comments on earlier drafts. Also,
at I would 1like to thank Professor Tom Leonard of the University of Wisconsin.

Some of the methods used in chapter IV were originally proposed by him.
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